⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uks.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// uks.cc --- implementation of the unrestricted Hartree-Fock class//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/timer.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <math/optimize/scextrapmat.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/dft/uks.h>#include <chemistry/qc/scf/lgbuild.h>#include <chemistry/qc/scf/ltbgrad.h>#include <chemistry/qc/dft/ukstmpl.h>using namespace std;using namespace sc;///////////////////////////////////////////////////////////////////////////// UKSstatic ClassDesc UKS_cd(  typeid(UKS),"UKS",1,"public UnrestrictedSCF",  0, create<UKS>, create<UKS>);UKS::UKS(StateIn& s) :  SavableState(s),  UnrestrictedSCF(s){  exc_=0;  integrator_ << SavableState::restore_state(s);  functional_ << SavableState::restore_state(s);  vaxc_ = basis_matrixkit()->symmmatrix(so_dimension());  vaxc_.restore(s);  vbxc_ = basis_matrixkit()->symmmatrix(so_dimension());  vbxc_.restore(s);}UKS::UKS(const Ref<KeyVal>& keyval) :  UnrestrictedSCF(keyval){  exc_=0;  integrator_ << keyval->describedclassvalue("integrator");  if (integrator_.null()) integrator_ = new RadialAngularIntegrator();  functional_ << keyval->describedclassvalue("functional");  if (functional_.null()) {    ExEnv::outn() << "ERROR: " << class_name() << ": no \"functional\" given" << endl;    abort();  }}UKS::~UKS(){}voidUKS::save_data_state(StateOut& s){  UnrestrictedSCF::save_data_state(s);  SavableState::save_state(integrator_.pointer(),s);  SavableState::save_state(functional_.pointer(),s);  vaxc_.save(s);  vbxc_.save(s);}intUKS::value_implemented() const{  return 1;}intUKS::gradient_implemented() const{  return 1;}doubleUKS::scf_energy(){  RefSymmSCMatrix mva = vaxc_.copy();  mva.scale(-1.0);  focka_.result_noupdate().accumulate(mva);  RefSymmSCMatrix mvb = vbxc_.copy();  mvb.scale(-1.0);  fockb_.result_noupdate().accumulate(mvb);  double ehf = UnrestrictedSCF::scf_energy();  focka_.result_noupdate().accumulate(vaxc_);  fockb_.result_noupdate().accumulate(vbxc_);  return ehf + exc_;}Ref<SCExtrapData>UKS::extrap_data(){  RefSymmSCMatrix *m = new RefSymmSCMatrix[4];  m[0] = focka_.result_noupdate();  m[1] = fockb_.result_noupdate();  m[2] = vaxc_;  m[3] = vbxc_;    Ref<SCExtrapData> data = new SymmSCMatrixNSCExtrapData(4, m);  delete[] m;    return data;}voidUKS::print(ostream&o) const{  o << indent << "Unrestricted Kohn-Sham (UKS) Parameters:" << endl;  o << incindent;  UnrestrictedSCF::print(o);  o << indent << "Functional:" << endl;  o << incindent;  functional_->print(o);  o << decindent;  o << indent << "Integrator:" << endl;  o << incindent;  integrator_->print(o);  o << decindent;  o << decindent;}//////////////////////////////////////////////////////////////////////////////voidUKS::two_body_energy(double &ec, double &ex){  tim_enter("uks e2");  ec = 0.0;  ex = 0.0;  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *apmat;    double *bpmat;    tim_enter("local data");    RefSymmSCMatrix adens = alpha_ao_density();    RefSymmSCMatrix bdens = beta_ao_density();    adens->scale(2.0);    adens->scale_diagonal(0.5);    bdens->scale(2.0);    bdens->scale_diagonal(0.5);    RefSymmSCMatrix aptmp = get_local_data(adens, apmat, SCF::Read);    RefSymmSCMatrix bptmp = get_local_data(bdens, bpmat, SCF::Read);    tim_exit("local data");    // initialize the two electron integral classes    Ref<TwoBodyInt> tbi = integral()->electron_repulsion();    tbi->set_integral_storage(0);    signed char * pmax = init_pmax(apmat);      LocalUKSEnergyContribution lclc(apmat, bpmat, 0);    Ref<PetiteList> pl = integral()->petite_list();    LocalGBuild<LocalUKSEnergyContribution>      gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0);    gb.run();    delete[] pmax;    ec = lclc.ec;    ex = lclc.ex;  }  else {    ExEnv::out0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  tim_exit("uks e2");}//////////////////////////////////////////////////////////////////////////////voidUKS::ao_fock(double accuracy){  Ref<PetiteList> pl = integral()->petite_list(basis());    // calculate G.  First transform diff_densa_ to the AO basis, then  // scale the off-diagonal elements by 2.0  RefSymmSCMatrix dda = diff_densa_;  diff_densa_ = pl->to_AO_basis(dda);  diff_densa_->scale(2.0);  diff_densa_->scale_diagonal(0.5);  RefSymmSCMatrix ddb = diff_densb_;  diff_densb_ = pl->to_AO_basis(ddb);  diff_densb_->scale(2.0);  diff_densb_->scale_diagonal(0.5);  // now try to figure out the matrix specialization we're dealing with  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert G and P to local matrices  if (local_ || local_dens_) {    double *gmat, *gmato, *pmat, *pmato;        // grab the data pointers from the G and P matrices    RefSymmSCMatrix gtmp = get_local_data(gmata_, gmat, SCF::Accum);    RefSymmSCMatrix ptmp = get_local_data(diff_densa_, pmat, SCF::Read);    RefSymmSCMatrix gotmp = get_local_data(gmatb_, gmato, SCF::Accum);    RefSymmSCMatrix potmp = get_local_data(diff_densb_, pmato, SCF::Read);    signed char * pmax = init_pmax(pmat);  //      LocalUKSContribution lclc(gmat, pmat, gmato, pmato, functional_->a0());//      LocalGBuild<LocalUKSContribution>//        gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0);//      gb.run();    int i;    int nthread = threadgrp_->nthread();    LocalGBuild<LocalUKSContribution> **gblds =      new LocalGBuild<LocalUKSContribution>*[nthread];    LocalUKSContribution **conts = new LocalUKSContribution*[nthread];        double **gmats = new double*[nthread];    gmats[0] = gmat;    double **gmatos = new double*[nthread];    gmatos[0] = gmato;        Ref<GaussianBasisSet> bs = basis();    int ntri = i_offset(bs->nbasis());    double gmat_accuracy = accuracy;    if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }    for (i=0; i < nthread; i++) {      if (i) {        gmats[i] = new double[ntri];        memset(gmats[i], 0, sizeof(double)*ntri);        gmatos[i] = new double[ntri];        memset(gmatos[i], 0, sizeof(double)*ntri);      }      conts[i] = new LocalUKSContribution(gmats[i], pmat, gmatos[i], pmato,                                          functional_->a0());      gblds[i] = new LocalGBuild<LocalUKSContribution>(*conts[i], tbis_[i],        pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i        );      threadgrp_->add_thread(i, gblds[i]);    }    tim_enter("start thread");    if (threadgrp_->start_threads() < 0) {      ExEnv::err0() << indent           << "UKS: error starting threads" << endl;      abort();    }    tim_exit("start thread");    tim_enter("stop thread");    if (threadgrp_->wait_threads() < 0) {      ExEnv::err0() << indent           << "UKS: error waiting for threads" << endl;      abort();    }    tim_exit("stop thread");          double tnint=0;    for (i=0; i < nthread; i++) {      tnint += gblds[i]->tnint;      if (i) {        for (int j=0; j < ntri; j++) {          gmat[j] += gmats[i][j];          gmato[j] += gmatos[i][j];        }        delete[] gmats[i];        delete[] gmatos[i];      }      delete gblds[i];      delete conts[i];    }    delete[] gmats;    delete[] gmatos;    delete[] gblds;    delete[] conts;    delete[] pmax;    scf_grp_->sum(&tnint, 1, 0, 0);    ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint);        // if we're running on multiple processors, then sum the G matrices    if (scf_grp_->n() > 1) {      scf_grp_->sum(gmat, i_offset(basis()->nbasis()));      scf_grp_->sum(gmato, i_offset(basis()->nbasis()));    }        // if we're running on multiple processors, or we don't have local    // matrices, then accumulate gtmp back into G    if (!local_ || scf_grp_->n() > 1) {      gmata_->convert_accumulate(gtmp);      gmatb_->convert_accumulate(gotmp);    }  }  // for now quit  else {    ExEnv::out0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }    diff_densa_ = pl->to_AO_basis(densa_);  diff_densb_ = pl->to_AO_basis(densb_);  integrator_->set_compute_potential_integrals(1);  integrator_->set_accuracy(accuracy);  integrator_->integrate(functional_, diff_densa_, diff_densb_);  exc_ = integrator_->value();  RefSymmSCMatrix vxa = gmata_.clone();  RefSymmSCMatrix vxb = gmatb_.clone();  vxa->assign((double*)integrator_->alpha_vmat());  vxb->assign((double*)integrator_->beta_vmat());  vxa = pl->to_SO_basis(vxa);  vxb = pl->to_SO_basis(vxb);  vaxc_ = vxa;  vbxc_ = vxb;  // get rid of AO delta P  diff_densa_ = dda;  dda = diff_densa_.clone();  diff_densb_ = ddb;  ddb = diff_densb_.clone();  // now symmetrize the skeleton G matrix, placing the result in dda  RefSymmSCMatrix skel_gmat = gmata_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,dda);  skel_gmat = gmatb_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,ddb);    // Fa = H+Ga  focka_.result_noupdate().assign(hcore_);  focka_.result_noupdate().accumulate(dda);  focka_.result_noupdate().accumulate(vaxc_);  // Fb = H+Gb  fockb_.result_noupdate().assign(hcore_);  fockb_.result_noupdate().accumulate(ddb);  fockb_.result_noupdate().accumulate(vbxc_);  dda.assign(0.0);  accumddh_->accum(dda);  focka_.result_noupdate().accumulate(dda);  fockb_.result_noupdate().accumulate(dda);  focka_.computed()=1;  fockb_.computed()=1;}/////////////////////////////////////////////////////////////////////////////voidUKS::two_body_deriv(double * tbgrad){  tim_enter("grad");  int natom3 = 3*molecule()->natom();  tim_enter("two-body");  double *hfgrad = new double[natom3];  memset(hfgrad,0,sizeof(double)*natom3);  two_body_deriv_hf(hfgrad,functional_->a0());  //print_natom_3(hfgrad, "Two-body contribution to DFT gradient");  tim_exit("two-body");  double *dftgrad = new double[natom3];  memset(dftgrad,0,sizeof(double)*natom3);  RefSymmSCMatrix ao_dens_a = alpha_ao_density();  RefSymmSCMatrix ao_dens_b = beta_ao_density();  integrator_->init(this);  integrator_->set_compute_potential_integrals(0);  integrator_->set_accuracy(desired_gradient_accuracy());  integrator_->integrate(functional_, ao_dens_a, ao_dens_b, dftgrad);  integrator_->done();  //print_natom_3(dftgrad, "E-X contribution to DFT gradient");  scf_grp_->sum(dftgrad, natom3);  for (int i=0; i<natom3; i++) tbgrad[i] += dftgrad[i] + hfgrad[i];  delete[] dftgrad;  delete[] hfgrad;  tim_exit("grad");}/////////////////////////////////////////////////////////////////////////////voidUKS::init_vector(){  integrator_->init(this);  UnrestrictedSCF::init_vector();}voidUKS::done_vector(){  integrator_->done();  UnrestrictedSCF::done_vector();}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -