⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hsosks.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// hsosks.cc --- implementation of restricted open shell Kohn-Sham SCF// derived from clks.cc//// Copyright (C) 1997 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/timer.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <math/optimize/scextrapmat.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/dft/hsosks.h>#include <chemistry/qc/scf/lgbuild.h>#include <chemistry/qc/scf/ltbgrad.h>#include <chemistry/qc/scf/effh.h>#include <chemistry/qc/scf/scfops.h>#include <chemistry/qc/dft/hsoskstmpl.h>using namespace std;using namespace sc;///////////////////////////////////////////////////////////////////////////// HSOSKSstatic ClassDesc HSOSKS_cd(  typeid(HSOSKS),"HSOSKS",1,"public HSOSSCF",  0, create<HSOSKS>, create<HSOSKS>);HSOSKS::HSOSKS(StateIn& s) :  SavableState(s),  HSOSSCF(s){  exc_=0;  integrator_ << SavableState::restore_state(s);  functional_ << SavableState::restore_state(s);  vxc_a_ = basis_matrixkit()->symmmatrix(so_dimension());  vxc_a_.restore(s);  vxc_b_ = basis_matrixkit()->symmmatrix(so_dimension());  vxc_b_.restore(s);}HSOSKS::HSOSKS(const Ref<KeyVal>& keyval) :  HSOSSCF(keyval){  exc_=0;  integrator_ << keyval->describedclassvalue("integrator");  if (integrator_.null()) integrator_ = new RadialAngularIntegrator();  functional_ << keyval->describedclassvalue("functional");  if (functional_.null()) {    ExEnv::outn() << "ERROR: " << class_name() << ": no \"functional\" given" << endl;    abort();  }}HSOSKS::~HSOSKS(){}voidHSOSKS::save_data_state(StateOut& s){  HSOSSCF::save_data_state(s);  SavableState::save_state(integrator_.pointer(),s);  SavableState::save_state(functional_.pointer(),s);  vxc_a_.save(s);  vxc_b_.save(s);}intHSOSKS::value_implemented() const{  return 1;}intHSOSKS::gradient_implemented() const{  return 1;}voidHSOSKS::print(ostream&o) const{  o << indent    << "Restricted Open Shell Kohn-Sham (HSOSKS) Parameters:" << endl;  o << incindent;  HSOSSCF::print(o);  o << indent << "Functional:" << endl;  o << incindent;  functional_->print(o);  o << decindent;  o << indent << "Integrator:" << endl;  o << incindent;  integrator_->print(o);  o << decindent;  o << decindent;}doubleHSOSKS::scf_energy(){  double ehf = HSOSSCF::scf_energy();  return ehf+exc_;}RefSymmSCMatrixHSOSKS::effective_fock(){  RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit());  mofock.assign(0.0);  RefSymmSCMatrix mofocko(oso_dimension(), basis_matrixkit());  mofocko.assign(0.0);  // use eigenvectors if oso_scf_vector_ is null  if (oso_scf_vector_.null()) {    mofock.accumulate_transform(eigenvectors(), fock(0)+cl_vxc(),                                SCMatrix::TransposeTransform);    mofocko.accumulate_transform(eigenvectors(), fock(1)+op_vxc(),                                 SCMatrix::TransposeTransform);  } else {    RefSCMatrix so_to_oso_tr = so_to_orthog_so().t();    mofock.accumulate_transform(so_to_oso_tr * oso_scf_vector_,                                fock(0)+cl_vxc(),                                SCMatrix::TransposeTransform);    mofocko.accumulate_transform(so_to_oso_tr * oso_scf_vector_,                                 fock(1)+op_vxc(),                                 SCMatrix::TransposeTransform);  }  Ref<SCElementOp2> op = new GSGeneralEffH(this);  mofock.element_op(op, mofocko);  return mofock;}RefSymmSCMatrixHSOSKS::lagrangian(){  RefSCMatrix so_to_oso_tr = so_to_orthog_so().t();  RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit());  mofock.assign(0.0);  mofock.accumulate_transform(so_to_oso_tr * oso_scf_vector_,                              cl_fock_.result_noupdate()+cl_vxc(),                              SCMatrix::TransposeTransform);  RefSymmSCMatrix mofocko(oso_dimension(), basis_matrixkit());  mofocko.assign(0.0);  mofocko.accumulate_transform(so_to_oso_tr * oso_scf_vector_,                               op_fock_.result_noupdate()+op_vxc(),                               SCMatrix::TransposeTransform);  mofock.scale(2.0);    Ref<SCElementOp2> op = new MOLagrangian(this);  mofock.element_op(op, mofocko);  mofocko=0;  // transform MO lagrangian to SO basis  RefSymmSCMatrix so_lag(so_dimension(), basis_matrixkit());  so_lag.assign(0.0);  so_lag.accumulate_transform(so_to_oso_tr * oso_scf_vector_, mofock);    // and then from SO to AO  Ref<PetiteList> pl = integral()->petite_list();  RefSymmSCMatrix ao_lag = pl->to_AO_basis(so_lag);  ao_lag.scale(-1.0);  return ao_lag;}Ref<SCExtrapData>HSOSKS::extrap_data(){  Ref<SCExtrapData> data =    new SymmSCMatrix4SCExtrapData(cl_fock_.result_noupdate(),                                  op_fock_.result_noupdate(),                                  vxc_a_, vxc_b_);  return data;}//////////////////////////////////////////////////////////////////////////////voidHSOSKS::ao_fock(double accuracy){  Ref<PetiteList> pl = integral()->petite_list(basis());    // calculate G.  First transform cl_dens_diff_ to the AO basis, then  // scale the off-diagonal elements by 2.0  RefSymmSCMatrix dd = cl_dens_diff_;  cl_dens_diff_ = pl->to_AO_basis(dd);  cl_dens_diff_->scale(2.0);  cl_dens_diff_->scale_diagonal(0.5);  RefSymmSCMatrix ddo = op_dens_diff_;  op_dens_diff_ = pl->to_AO_basis(ddo);  op_dens_diff_->scale(2.0);  op_dens_diff_->scale_diagonal(0.5);    // now try to figure out the matrix specialization we're dealing with  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert G and P to local matrices  if (local_ || local_dens_) {    double *gmat, *gmato, *pmat, *pmato;        // grab the data pointers from the G and P matrices    RefSymmSCMatrix gtmp = get_local_data(cl_gmat_, gmat, SCF::Accum);    RefSymmSCMatrix ptmp = get_local_data(cl_dens_diff_, pmat, SCF::Read);    RefSymmSCMatrix gotmp = get_local_data(op_gmat_, gmato, SCF::Accum);    RefSymmSCMatrix potmp = get_local_data(op_dens_diff_, pmato, SCF::Read);    signed char * pmax = init_pmax(pmat);  //      LocalHSOSKSContribution lclc(gmat, pmat, gmato, pmato, functional_->a0());//      LocalGBuild<LocalHSOSKSContribution>//        gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0);//      gb.run();    int i;    int nthread = threadgrp_->nthread();    LocalGBuild<LocalHSOSKSContribution> **gblds =      new LocalGBuild<LocalHSOSKSContribution>*[nthread];    LocalHSOSKSContribution **conts = new LocalHSOSKSContribution*[nthread];        double **gmats = new double*[nthread];    gmats[0] = gmat;    double **gmatos = new double*[nthread];    gmatos[0] = gmato;        Ref<GaussianBasisSet> bs = basis();    int ntri = i_offset(bs->nbasis());    double gmat_accuracy = accuracy;    if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }    for (i=0; i < nthread; i++) {      if (i) {        gmats[i] = new double[ntri];        memset(gmats[i], 0, sizeof(double)*ntri);        gmatos[i] = new double[ntri];        memset(gmatos[i], 0, sizeof(double)*ntri);      }      conts[i] = new LocalHSOSKSContribution(gmats[i], pmat, gmatos[i], pmato,                                             functional_->a0());      gblds[i] = new LocalGBuild<LocalHSOSKSContribution>(*conts[i], tbis_[i],        pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i        );      threadgrp_->add_thread(i, gblds[i]);    }    tim_enter("start thread");    if (threadgrp_->start_threads() < 0) {      ExEnv::err0() << indent           << "HSOSKS: error starting threads" << endl;      abort();    }    tim_exit("start thread");    tim_enter("stop thread");    if (threadgrp_->wait_threads() < 0) {      ExEnv::err0() << indent           << "HSOSKS: error waiting for threads" << endl;      abort();    }    tim_exit("stop thread");          double tnint=0;    for (i=0; i < nthread; i++) {      tnint += gblds[i]->tnint;      if (i) {        for (int j=0; j < ntri; j++) {          gmat[j] += gmats[i][j];          gmato[j] += gmatos[i][j];        }        delete[] gmats[i];        delete[] gmatos[i];      }      delete gblds[i];      delete conts[i];    }    delete[] gmats;    delete[] gmatos;    delete[] gblds;    delete[] conts;    delete[] pmax;    scf_grp_->sum(&tnint, 1, 0, 0);    ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint);        // if we're running on multiple processors, then sum the G matrices    if (scf_grp_->n() > 1) {      scf_grp_->sum(gmat, i_offset(basis()->nbasis()));      scf_grp_->sum(gmato, i_offset(basis()->nbasis()));    }        // if we're running on multiple processors, or we don't have local    // matrices, then accumulate gtmp back into G    if (!local_ || scf_grp_->n() > 1) {      cl_gmat_->convert_accumulate(gtmp);      op_gmat_->convert_accumulate(gotmp);    }  }  // for now quit  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  RefSymmSCMatrix dens_a = alpha_ao_density();  RefSymmSCMatrix dens_b = beta_ao_density();  integrator_->set_compute_potential_integrals(1);  integrator_->set_accuracy(accuracy);  integrator_->integrate(functional_, dens_a, dens_b);  exc_ = integrator_->value();  vxc_a_ = dens_a.clone();  vxc_a_->assign((double*)integrator_->alpha_vmat());  vxc_a_ = pl->to_SO_basis(vxc_a_);  vxc_b_ = dens_b.clone();  vxc_b_->assign((double*)integrator_->beta_vmat());  vxc_b_ = pl->to_SO_basis(vxc_b_);    // get rid of AO delta P  cl_dens_diff_ = dd;  dd = cl_dens_diff_.clone();  op_dens_diff_ = ddo;  ddo = op_dens_diff_.clone();  // now symmetrize the skeleton G matrix, placing the result in dd  RefSymmSCMatrix skel_gmat = cl_gmat_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,dd);  skel_gmat = op_gmat_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,ddo);    // F = H+G  cl_fock_.result_noupdate().assign(hcore_);  cl_fock_.result_noupdate().accumulate(dd);  // Fo = H+G-Go  op_fock_.result_noupdate().assign(cl_fock_.result_noupdate());  ddo.scale(-1.0);  op_fock_.result_noupdate().accumulate(ddo);  ddo=0;  dd.assign(0.0);  accumddh_->accum(dd);  cl_fock_.result_noupdate().accumulate(dd);  op_fock_.result_noupdate().accumulate(dd);  dd=0;  cl_fock_.computed()=1;  op_fock_.computed()=1;}/////////////////////////////////////////////////////////////////////////////voidHSOSKS::two_body_energy(double &ec, double &ex){  tim_enter("hsosks e2");  ec = 0.0;  ex = 0.0;  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *dpmat;    double *spmat;    tim_enter("local data");    RefSymmSCMatrix ddens = beta_ao_density();    RefSymmSCMatrix sdens = alpha_ao_density() - ddens;    ddens->scale(2.0);    ddens->accumulate(sdens);    ddens->scale(2.0);    ddens->scale_diagonal(0.5);    sdens->scale(2.0);    sdens->scale_diagonal(0.5);    RefSymmSCMatrix dptmp = get_local_data(ddens, dpmat, SCF::Read);    RefSymmSCMatrix sptmp = get_local_data(sdens, spmat, SCF::Read);    tim_exit("local data");    // initialize the two electron integral classes    Ref<TwoBodyInt> tbi = integral()->electron_repulsion();    tbi->set_integral_storage(0);    signed char * pmax = init_pmax(dpmat);      LocalHSOSKSEnergyContribution lclc(dpmat, spmat, functional_->a0());    Ref<PetiteList> pl = integral()->petite_list();    LocalGBuild<LocalHSOSKSEnergyContribution>      gb(lclc, tbi, pl, basis(), scf_grp_, pmax,         desired_value_accuracy()/100.0);    gb.run();    delete[] pmax;    ec = lclc.ec;    ex = lclc.ex;  }  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  tim_exit("hsoshf e2");}/////////////////////////////////////////////////////////////////////////////voidHSOSKS::two_body_deriv(double * tbgrad){  tim_enter("grad");  int natom3 = 3*molecule()->natom();  tim_enter("two-body");  double *hfgrad = new double[natom3];  memset(hfgrad,0,sizeof(double)*natom3);  two_body_deriv_hf(hfgrad,functional_->a0());  //print_natom_3(hfgrad, "Two-body contribution to DFT gradient");  tim_exit("two-body");  double *dftgrad = new double[natom3];  memset(dftgrad,0,sizeof(double)*natom3);  RefSymmSCMatrix dens_a = alpha_ao_density();  RefSymmSCMatrix dens_b = beta_ao_density();  integrator_->init(this);  integrator_->set_compute_potential_integrals(0);  integrator_->set_accuracy(desired_gradient_accuracy());  integrator_->integrate(functional_, dens_a, dens_b, dftgrad);  // must unset the wavefunction so we don't have a circular list that  // will not be freed with the reference counting memory manager  integrator_->done();  //print_natom_3(dftgrad, "E-X contribution to DFT gradient");  scf_grp_->sum(dftgrad, natom3);  for (int i=0; i<natom3; i++) tbgrad[i] += dftgrad[i] + hfgrad[i];  delete[] dftgrad;  delete[] hfgrad;  tim_exit("grad");}RefSymmSCMatrixHSOSKS::cl_vxc(){  RefSymmSCMatrix r = vxc_a_+vxc_b_;  r.scale(0.5);  return r;}RefSymmSCMatrixHSOSKS::op_vxc(){  RefSymmSCMatrix r = vxc_a_.copy();  return r;}/////////////////////////////////////////////////////////////////////////////voidHSOSKS::init_vector(){  integrator_->init(this);  HSOSSCF::init_vector();}voidHSOSKS::done_vector(){  integrator_->done();  HSOSSCF::done_vector();}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -