⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clks.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// clks.cc --- implementation of the closed shell Kohn-Sham SCF class//// Copyright (C) 1997 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/timer.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <math/optimize/scextrapmat.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/dft/clks.h>#include <chemistry/qc/scf/lgbuild.h>#include <chemistry/qc/scf/ltbgrad.h>#include <chemistry/qc/dft/clkstmpl.h>using namespace std;using namespace sc;///////////////////////////////////////////////////////////////////////////// CLKSstatic ClassDesc CLKS_cd(  typeid(CLKS),"CLKS",1,"public CLSCF",  0, create<CLKS>, create<CLKS>);CLKS::CLKS(StateIn& s) :  SavableState(s),  CLSCF(s){  exc_=0;  integrator_ << SavableState::restore_state(s);  functional_ << SavableState::restore_state(s);  vxc_ = basis_matrixkit()->symmmatrix(so_dimension());  vxc_.restore(s);}CLKS::CLKS(const Ref<KeyVal>& keyval) :  CLSCF(keyval){  exc_=0;  integrator_ << keyval->describedclassvalue("integrator");  if (integrator_.null()) integrator_ = new RadialAngularIntegrator();  functional_ << keyval->describedclassvalue("functional");  if (functional_.null()) {    ExEnv::outn() << "ERROR: " << class_name() << ": no \"functional\" given" << endl;    abort();  }}CLKS::~CLKS(){}voidCLKS::save_data_state(StateOut& s){  CLSCF::save_data_state(s);  SavableState::save_state(integrator_.pointer(),s);  SavableState::save_state(functional_.pointer(),s);  vxc_.save(s);}intCLKS::value_implemented() const{  return 1;}intCLKS::gradient_implemented() const{  return 1;}voidCLKS::print(ostream&o) const{  o << indent << "Closed Shell Kohn-Sham (CLKS) Parameters:" << endl;  o << incindent;  CLSCF::print(o);  o << indent << "Functional:" << endl;  o << incindent;  functional_->print(o);  o << decindent;  o << indent << "Integrator:" << endl;  o << incindent;  integrator_->print(o);  o << decindent;  o << decindent;}RefSymmSCMatrixCLKS::density(){  RefSymmSCMatrix dens(so_dimension(), basis_matrixkit());  so_density(dens, 2.0);  dens.scale(2.0);  return dens;}doubleCLKS::scf_energy(){  double ehf = CLSCF::scf_energy();  return ehf+exc_;}RefSymmSCMatrixCLKS::effective_fock(){  RefSymmSCMatrix fa = fock(0) + vxc_;  RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit());  mofock.assign(0.0);  // use eigenvectors if scf_vector_ is null  if (oso_scf_vector_.null())    mofock.accumulate_transform(eigenvectors(), fa,                                SCMatrix::TransposeTransform);  else    mofock.accumulate_transform(so_to_orthog_so().t() * oso_scf_vector_, fa,                                SCMatrix::TransposeTransform);  return mofock;}Ref<SCExtrapData>CLKS::extrap_data(){  Ref<SCExtrapData> data =    new SymmSCMatrix2SCExtrapData(cl_fock_.result_noupdate(), vxc_);  return data;}//////////////////////////////////////////////////////////////////////////////voidCLKS::ao_fock(double accuracy){  Ref<PetiteList> pl = integral()->petite_list(basis());    // calculate G.  First transform cl_dens_diff_ to the AO basis, then  // scale the off-diagonal elements by 2.0  tim_enter("setup");  RefSymmSCMatrix dd = cl_dens_diff_;  cl_dens_diff_ = pl->to_AO_basis(dd);  cl_dens_diff_->scale(2.0);  cl_dens_diff_->scale_diagonal(0.5);  tim_exit("setup");  // now try to figure out the matrix specialization we're dealing with  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert G and P to local matrices  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *gmat, *pmat;    tim_enter("local data");    RefSymmSCMatrix gtmp = get_local_data(cl_gmat_, gmat, SCF::Accum);    RefSymmSCMatrix ptmp = get_local_data(cl_dens_diff_, pmat, SCF::Read);    tim_exit("local data");    tim_enter("init pmax");    signed char * pmax = init_pmax(pmat);    tim_exit("init pmax");  //      LocalCLKSContribution lclc(gmat, pmat, functional_->a0());//      LocalGBuild<LocalCLKSContribution>//        gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0);//      gb.run();    int i;    int nthread = threadgrp_->nthread();    LocalGBuild<LocalCLKSContribution> **gblds =      new LocalGBuild<LocalCLKSContribution>*[nthread];    LocalCLKSContribution **conts = new LocalCLKSContribution*[nthread];        double **gmats = new double*[nthread];    gmats[0] = gmat;        Ref<GaussianBasisSet> bs = basis();    int ntri = i_offset(bs->nbasis());    double gmat_accuracy = accuracy;    if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }    for (i=0; i < nthread; i++) {      if (i) {        gmats[i] = new double[ntri];        memset(gmats[i], 0, sizeof(double)*ntri);      }      conts[i] = new LocalCLKSContribution(gmats[i], pmat, functional_->a0());      gblds[i] = new LocalGBuild<LocalCLKSContribution>(*conts[i], tbis_[i],        pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i        );      threadgrp_->add_thread(i, gblds[i]);    }    tim_enter("start thread");    if (threadgrp_->start_threads() < 0) {      ExEnv::err0() << indent           << "CLKS: error starting threads" << endl;      abort();    }    tim_exit("start thread");    tim_enter("stop thread");    if (threadgrp_->wait_threads() < 0) {      ExEnv::err0() << indent           << "CLKS: error waiting for threads" << endl;      abort();    }    tim_exit("stop thread");    double tnint=0;    for (i=0; i < nthread; i++) {      tnint += gblds[i]->tnint;            if (i) {        for (int j=0; j < ntri; j++)          gmat[j] += gmats[i][j];        delete[] gmats[i];      }      delete gblds[i];      delete conts[i];    }    delete[] gmats;    delete[] gblds;    delete[] conts;    delete[] pmax;    scf_grp_->sum(&tnint, 1, 0, 0);    ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint);        // if we're running on multiple processors, then sum the G matrix    tim_enter("sum");    if (scf_grp_->n() > 1)      scf_grp_->sum(gmat, i_offset(basis()->nbasis()));    tim_exit("sum");    // if we're running on multiple processors, or we don't have local    // matrices, then accumulate gtmp back into G    tim_enter("accum");    if (!local_ || scf_grp_->n() > 1)      cl_gmat_->convert_accumulate(gtmp);    tim_exit("accum");  }  // for now quit  else {    ExEnv::out0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }    cl_dens_diff_ = pl->to_AO_basis(cl_dens_);  cl_dens_diff_.scale(0.5);  integrator_->set_compute_potential_integrals(1);  integrator_->set_accuracy(accuracy);  integrator_->integrate(functional_, cl_dens_diff_, cl_dens_diff_);  exc_ = integrator_->value();  RefSymmSCMatrix vxa = cl_gmat_.clone();  vxa->assign((double*)integrator_->alpha_vmat());  vxa = pl->to_SO_basis(vxa);  vxc_ = vxa;  tim_enter("symm");  // get rid of AO delta P  cl_dens_diff_ = dd;  dd = cl_dens_diff_.clone();  // now symmetrize the skeleton G matrix, placing the result in dd  RefSymmSCMatrix skel_gmat = cl_gmat_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,dd);  tim_exit("symm");      // F = H+G  cl_fock_.result_noupdate().assign(hcore_);  cl_fock_.result_noupdate().accumulate(dd);  accumddh_->accum(cl_fock_.result_noupdate());  cl_fock_.computed()=1;}/////////////////////////////////////////////////////////////////////////////voidCLKS::two_body_energy(double &ec, double &ex){  tim_enter("clks e2");  ec = 0.0;  ex = 0.0;  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *pmat;    tim_enter("local data");    RefSymmSCMatrix dens = ao_density();    dens->scale(2.0);    dens->scale_diagonal(0.5);    RefSymmSCMatrix ptmp = get_local_data(dens, pmat, SCF::Read);    tim_exit("local data");    // initialize the two electron integral classes    Ref<TwoBodyInt> tbi = integral()->electron_repulsion();    tbi->set_integral_storage(0);    tim_enter("init pmax");    signed char * pmax = init_pmax(pmat);    tim_exit("init pmax");      LocalCLKSEnergyContribution lclc(pmat, functional_->a0());    Ref<PetiteList> pl = integral()->petite_list();    LocalGBuild<LocalCLKSEnergyContribution>      gb(lclc, tbi, pl, basis(), scf_grp_, pmax,         desired_value_accuracy()/100.0);    gb.run();    delete[] pmax;    ec = lclc.ec;    ex = lclc.ex;  }  else {    ExEnv::out0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  tim_exit("clks e2");}/////////////////////////////////////////////////////////////////////////////voidCLKS::two_body_deriv(double * tbgrad){  tim_enter("grad");  int natom3 = 3*molecule()->natom();  tim_enter("two-body");  double *hfgrad = new double[natom3];  memset(hfgrad,0,sizeof(double)*natom3);  two_body_deriv_hf(hfgrad,functional_->a0());  //print_natom_3(hfgrad, "Two-body contribution to DFT gradient");  tim_exit("two-body");  double *dftgrad = new double[natom3];  memset(dftgrad,0,sizeof(double)*natom3);  Ref<PetiteList> pl = integral()->petite_list(basis());  RefSymmSCMatrix aodens = gradient_density();  aodens.scale(0.5);  integrator_->set_compute_potential_integrals(0);  integrator_->init(this);  integrator_->set_accuracy(desired_gradient_accuracy());  integrator_->integrate(functional_, aodens, aodens, dftgrad);  integrator_->done();  //print_natom_3(dftgrad, "E-X contribution to DFT gradient");  scf_grp_->sum(dftgrad, natom3);  for (int i=0; i<natom3; i++) tbgrad[i] += dftgrad[i] + hfgrad[i];  delete[] dftgrad;  delete[] hfgrad;  tim_exit("grad");}/////////////////////////////////////////////////////////////////////////////voidCLKS::init_vector(){  integrator_->init(this);  CLSCF::init_vector();}voidCLKS::done_vector(){  integrator_->done();  CLSCF::done_vector();}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -