⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bem.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// bem.cc//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Curtis Janssen <cljanss@limitpt.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#include <stdio.h>#include <math.h>#include <util/misc/formio.h>#include <util/misc/timer.h>#include <math/scmat/matrix.h>#include <math/scmat/vector3.h>#include <math/scmat/local.h>#include <chemistry/solvent/bem.h>using namespace std;using namespace sc;static ClassDesc BEMSolvent_cd(  typeid(BEMSolvent),"BEMSolvent",1,"public DescribedClass",  0, create<BEMSolvent>, 0);BEMSolvent::BEMSolvent(const Ref<KeyVal>& keyval){  vertex_area_ = 0;  matrixkit_ = new LocalSCMatrixKit;    debug_ = keyval->intvalue("debug");    solute_ << keyval->describedclassvalue("solute");  solvent_ << keyval->describedclassvalue("solvent");  // Use the aug-cc-pVQZ MP2 optimum geometry for H2O as default  if (solvent_.null()) {      solvent_ = new Molecule;      solvent_->add_atom(8, 0.0000000000,  0.0000000000, -0.1265941233);      solvent_->add_atom(1, 0.0000000000,  1.4304840085,  0.9856159541);      solvent_->add_atom(1, 0.0000000000, -1.4304840085,  0.9856159541);    }  solvent_density_ = keyval->doublevalue("solvent_density");  // use as default the number density of water in au^-3, T=25 C, P=101325 Pa  if (keyval->error() != KeyVal::OK) solvent_density_ = 0.004938887;  surf_ << keyval->describedclassvalue("surface");  dielectric_constant_ = keyval->doublevalue("dielectric_constant");  if (keyval->error() != KeyVal::OK) dielectric_constant_ = 78.0;  grp_ = MessageGrp::get_default_messagegrp();}BEMSolvent::~BEMSolvent(){}double**BEMSolvent::alloc_array(int n, int m){  double ** result = new double*[n];  result[0] = new double[n*m];  for (int i=1; i<n; i++) {      result[i] = &result[i-1][m];    }  return result;}voidBEMSolvent::free_array(double** array){  if (!array) return;  delete[] array[0];  delete[] array;}voidBEMSolvent::charge_positions(double**pos){  int i,j;  int n = ncharge();  for (i=0; i<n; i++) {      const SCVector3& p = surf_->vertex(i)->point();      for (j=0; j<3; j++) {           pos[i][j] = p[j];        }    }}voidBEMSolvent::normals(double**norms){  int i,j;  int n = ncharge();  for (i=0; i<n; i++) {      const SCVector3& p = surf_->vertex(i)->normal();      for (j=0; j<3; j++) {           norms[i][j] = p[j];        }    }}voidBEMSolvent::init(){  surf_->clear();  surf_->init();  system_matrix_i_ = 0;  f_ = (1.0-dielectric_constant_)/(2.0*M_PI*(1.0+dielectric_constant_));  if (vertex_area_) delete[] vertex_area_;  vertex_area_ = new double[ncharge()];  for (int i=0; i<ncharge(); i++) vertex_area_[i] = 0.0;  TriangulatedSurfaceIntegrator triint(surf_.pointer());  for (triint = 0; triint.update(); triint++) {      int j0 = triint.vertex_number(0);      int j1 = triint.vertex_number(1);      int j2 = triint.vertex_number(2);      double r = triint.r();      double s = triint.s();      double dA = triint.w();      vertex_area_[j0] += dA * (1 - r - s);      vertex_area_[j1] += dA * r;      vertex_area_[j2] += dA * s;    }}voidBEMSolvent::done(int clear_surface){  if (clear_surface) surf_->clear();  system_matrix_i_ = 0;  if (vertex_area_) delete[] vertex_area_;  vertex_area_ = 0;}voidBEMSolvent::charges_to_surface_charge_density(double *charges){  for (int i=0; i<ncharge(); i++) charges[i] /= vertex_area_[i];}voidBEMSolvent::surface_charge_density_to_charges(double *charges){  for (int i=0; i<ncharge(); i++) charges[i] *= vertex_area_[i];}doubleBEMSolvent::polarization_charge(double *charges){  double charge = 0.0;  int n = ncharge();  for (int i=0; i<n; i++) charge += charges[i];  return charge;}// the passed enclosed_charge is determined by the called and// might different from the enclosed charge computed by Gauss's// law, which is stored as computed_enclosed_charge_voidBEMSolvent::normalize_charge(double enclosed_charge, double* charges){  int i;  double expected_charge = enclosed_charge                         * (1.0/dielectric_constant_ - 1.0);  double charge = 0.0;  double charge_pos = 0.0;  double charge_neg = 0.0;  int n = ncharge();  for (i=0; i<n; i++) {      charge += charges[i];      if (charges[i] > 0.0) charge_pos += charges[i];      else charge_neg += charges[i];    }  double scale_pos = 1.0;  double scale_neg = 1.0;  if (charge_pos > 1.0e-4 && charge_neg < -1.0e-4) {      scale_pos += (expected_charge-charge)/(2.0*charge_pos);      scale_neg += (expected_charge-charge)/(2.0*charge_neg);    }  else if (charge_pos > 1.0e-4) {      scale_pos += (expected_charge-charge)/charge_pos;    }  else if (charge_neg < -1.0e-4) {      scale_neg += (expected_charge-charge)/charge_neg;    }  double new_charge = 0.0;  for (i=0; i<n; i++) {      if (charges[i] > 0.0) charges[i] *= scale_pos;      else charges[i] *= scale_neg;      new_charge += charges[i];    }  if (fabs(new_charge - expected_charge) > 1.0e-3) {      ExEnv::outn() << "BEMSolvent:normalize_charge: failed:" << endl           << "new_charge = " << new_charge << endl           << "expected_charge = " << expected_charge << endl;      abort();    }  if (debug_) {      ExEnv::out0() << indent           << "BEMSolvent:normalize_charge:"           << endl << indent           << scprintf("  integrated surface charge = %20.15f", charge)           << endl << indent           << scprintf("  expected surface charge = %20.15f", expected_charge)           << endl;    }}voidBEMSolvent::init_system_matrix(){  int i, j;  int n = ncharge();  RefSCDimension d = new SCDimension(n);  RefSCMatrix system_matrix(d,d,matrixkit());  system_matrix.assign(0.0);  tim_enter("precomp");  // precompute some arrays  TriangulatedSurfaceIntegrator triint(surf_.pointer());  int n_integration_points = triint.n();  SCVector3 *surfpv = new SCVector3[n_integration_points];  double *rfdA = new double[n_integration_points];  double *sfdA = new double[n_integration_points];  double *rsfdA = new double[n_integration_points];  int *j0 = new int[n_integration_points];  int *j1 = new int[n_integration_points];  int *j2 = new int[n_integration_points];  for (triint=0, i=0; i<n_integration_points&&triint.update(); i++,triint++) {      surfpv[i] = triint.current()->point();      j0[i] = triint.vertex_number(0);      j1[i] = triint.vertex_number(1);      j2[i] = triint.vertex_number(2);      double r = triint.r();      double s = triint.s();      double rs = 1 - r - s;      double dA = triint.w();      double fdA = - f_ * dA;      rfdA[i] = r * fdA;      sfdA[i] = s * fdA;      rsfdA[i] = rs * fdA;    }  tim_exit("precomp");  tim_enter("sysmat");  double *sysmati = new double[n];  RefSCVector vsysmati(system_matrix->rowdim(),system_matrix->kit());  // loop thru all the vertices  for (i = 0; i<n; i++) {      memset(sysmati,0,sizeof(double)*n);      Ref<Vertex> v = surf_->vertex(i);      const SCVector3& pv = v->point();      const SCVector3& nv = v->normal();      // integrate over the surface      for (j = 0; j < n_integration_points; j++) {          SCVector3 diff(pv - surfpv[j]);          double normal_component = diff.dot(nv);          double diff2 = diff.dot(diff);          if (diff2 <= 1.0e-8) {              // The self term must not be included here.  This              // case shouldn't occur for the usual integrators              // so abort.              ExEnv::errn() << "BEMSolvent: integrator gave the self term" << endl;              abort();            }          double denom = diff2*sqrt(diff2);          double common_factor = normal_component/denom;          sysmati[j0[j]] += common_factor * rsfdA[j];          sysmati[j1[j]] += common_factor * rfdA[j];          sysmati[j2[j]] += common_factor * sfdA[j];        }      vsysmati->assign(sysmati);      system_matrix->assign_row(vsysmati,i);    }  tim_exit("sysmat");  delete[] surfpv;  delete[] rfdA;  delete[] sfdA;  delete[] rsfdA;  delete[] j0;  delete[] j1;  delete[] j2;  delete[] sysmati;  tim_enter("AV");  double A = 0.0;  double V = 0.0;  for (triint = 0; triint.update(); triint++) {      V += triint.weight()*triint.dA()[2]*triint.current()->point()[2];      A += triint.w();    }  area_ = A;  volume_ = V;  tim_exit("AV");  ExEnv::out0() << indent       << scprintf("Solvent Accessible Surface:") << endl       << indent       << scprintf("  Area = %15.10f ", A)       << scprintf("Volume = %15.10f ", V)       << scprintf("Nvertex = %3d", n) << endl;  // Add I to the system matrix.  system_matrix->shift_diagonal(1.0);  //system_matrix->print("System Matrix");  tim_enter("inv");  system_matrix->invert_this();  system_matrix_i_ = system_matrix;  tim_exit("inv");  //system_matrix_i_->print("System Matrix Inverse");}voidBEMSolvent::compute_charges(double* efield_dot_normals, double* charges){  if (system_matrix_i_.null()) {      tim_enter("sysmat");      init_system_matrix();      tim_exit("sysmat");    }  tim_enter("qenq");  double efield_dot_normal = 0.0;  int n = ncharge();  for (int i=0; i<n; i++)      efield_dot_normal += efield_dot_normals[i] * vertex_area_[i];  tim_exit("qenq");  computed_enclosed_charge_ = efield_dot_normal/(4.0*M_PI);  if (debug_) {      double computed_expected_charge = computed_enclosed_charge_                                      * (1.0/dielectric_constant_ - 1.0);      ExEnv::out0() << indent         << scprintf("BEMSolvent:compute_charges: encl q = %20.15f",                     computed_enclosed_charge_)         << endl << indent         << scprintf("BEMSolvent:compute_charges: exp surface q = %20.15f",                     computed_expected_charge) << endl;    }  tim_enter("scomp");  RefSCVector edotn(system_matrix_i_.coldim(),matrixkit());  edotn.assign(efield_dot_normals);  //edotn.print("E dot normals");  edotn.scale(f_);  RefSCVector chrg = system_matrix_i_ * edotn;  //chrg.print("Charges");  chrg.convert(charges);  tim_exit("scomp");  tim_enter("stoq");  surface_charge_density_to_charges(charges);  tim_exit("stoq");}doubleBEMSolvent::nuclear_charge_interaction_energy(double *nuclear_charge,                                              double** charge_positions,                                              double* charge){  double energy = 0.0;  int natom = solute_->natom();  for (int i=0; i<natom; i++) {      for (int j=0; j<ncharge(); j++) {          double r2 = 0.0;          for (int k=0; k<3; k++) {              double r = charge_positions[j][k] - solute_->r(i,k);              r2 += r*r;            }          energy += nuclear_charge[i] * charge[j] / sqrt(r2);        }    }  return energy;}doubleBEMSolvent::nuclear_interaction_energy(double** charge_positions,                                       double* charge){  double energy = 0.0;  int natom = solute_->natom();  for (int i=0; i<natom; i++) {      for (int j=0; j<ncharge(); j++) {          double r2 = 0.0;          for (int k=0; k<3; k++) {              double r = charge_positions[j][k] - solute_->r(i,k);              r2 += r*r;            }          energy += double(solute_->Z(i)) * charge[j] / sqrt(r2);        }    }  return energy;}doubleBEMSolvent::self_interaction_energy(double** charge_positions,                                    double* charge){  int i,j;  charges_to_surface_charge_density(charge);  TriangulatedSurfaceIntegrator triint(surf_.pointer());  int n_integration_points = triint.n();  SCVector3 *points = new SCVector3[n_integration_points];  double *charges = new double[n_integration_points];  double energy = 0.0;  for (triint=0, i=0; i<n_integration_points&&triint.update(); i++,triint++) {      points[i] = triint.current()->point();      int v0 = triint.vertex_number(0);      int v1 = triint.vertex_number(1);      int v2 = triint.vertex_number(2);      double r = triint.r();      double s = triint.s();      double rs = 1.0 - r - s;      double dA = triint.w();      charges[i] = (charge[v0]*rs + charge[v1]*r + charge[v2]*s)*dA;      energy += 0.0; // is this good enough for the self term?    }  for (i=0; i<n_integration_points; i++) {      double chargesi = charges[i];      SCVector3 pointsi(points[i]);      for (j = 0; j<i; j++) {          energy += chargesi*charges[j]/pointsi.dist(points[j]);        }    }  delete[] points;  delete[] charges;  surface_charge_density_to_charges(charge);  return energy;}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "CLJ"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -