⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stors.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// stors.cc//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Curtis Janssen <cljanss@limitpt.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#include <string.h>#include <math.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <chemistry/molecule/simple.h>#include <chemistry/molecule/localdef.h>using namespace sc;static ClassDesc ScaledTorsSimpleCo_cd(  typeid(ScaledTorsSimpleCo),"ScaledTorsSimpleCo",1,"public SimpleCo",  create<ScaledTorsSimpleCo>, create<ScaledTorsSimpleCo>, create<ScaledTorsSimpleCo>);SimpleCo_IMPL_eq(ScaledTorsSimpleCo)ScaledTorsSimpleCo::ScaledTorsSimpleCo(StateIn&s):  SimpleCo(s){  s.get(old_torsion_);}voidScaledTorsSimpleCo::save_data_state(StateOut&s){  SimpleCo::save_data_state(s);  s.put(old_torsion_);}ScaledTorsSimpleCo::ScaledTorsSimpleCo() : SimpleCo(4){  old_torsion_ = 0.0;}ScaledTorsSimpleCo::ScaledTorsSimpleCo(const ScaledTorsSimpleCo& s)  : SimpleCo(4){  *this=s;  old_torsion_ = 0.0;}ScaledTorsSimpleCo::ScaledTorsSimpleCo(const char *refr,                                       int a1, int a2, int a3, int a4)  : SimpleCo(4,refr){  atoms[0]=a1; atoms[1]=a2; atoms[2]=a3; atoms[3]=a4;  old_torsion_ = 0.0;}ScaledTorsSimpleCo::~ScaledTorsSimpleCo(){}ScaledTorsSimpleCo::ScaledTorsSimpleCo(const Ref<KeyVal> &kv):  SimpleCo(kv,4){  old_torsion_ = 0.0;}ScaledTorsSimpleCo&ScaledTorsSimpleCo::operator=(const ScaledTorsSimpleCo& s){  if(label_) delete[] label_;  label_=new char[strlen(s.label_)+1];  strcpy(label_,s.label_);  atoms[0]=s.atoms[0]; atoms[1]=s.atoms[1]; atoms[2]=s.atoms[2];  atoms[3]=s.atoms[3];  return *this;}doubleScaledTorsSimpleCo::calc_intco(Molecule& m, double *bmat, double coeff){  int a=atoms[0]-1; int b=atoms[1]-1; int c=atoms[2]-1; int d=atoms[3]-1;  SCVector3 u1,u2,u3,z1,z2;  SCVector3 ra(m.r(a)), rb(m.r(b)), rc(m.r(c)), rd(m.r(d));  double rab, rbc, rcd;  u1 = ra - rb; rab = u1.norm(); u1 *= 1.0/rab;  u2 = rc - rb; rbc = u2.norm(); u2 *= 1.0/rbc;  u3 = rc - rd; rcd = u3.norm(); u3 *= 1.0/rcd;  z1 = u1.perp_unit(u2);  z2 = u3.perp_unit(u2);  double co=z1.dot(z2);  SCVector3 z1xz2 = z1.cross(z2);  double co2=z1xz2.dot(u2);  if (co < -1.0) co= -1.0;  if (co > 1.0) co = 1.0;  double tors_value = (co2<0) ? acos(-co) : -acos(-co);  // ok, we want omega between 3*pi/2 and -pi/2, so if omega is > pi/2  // (omega is eventually -omega), then knock 2pi off of it  if(tors_value > pih) tors_value -= tpi;  // the following tests to see if the new coordinate has crossed the  // 3pi/2 <--> -pi/2 boundary...if so, then we add or subtract 2pi as  // needed to prevent the transformation from internals to cartesians  // from blowing up  while(old_torsion_ - tors_value > pi + 1.0e-6) tors_value += tpi;  while(old_torsion_ - tors_value < -(pi + 1.0e-6)) tors_value -= tpi;  // This differs from a normal torsion by the factor  // scalar(u1,u2)*scalar(u2,u3).  This prevents the  // value from being ill defined at nearly linear geometries.  double cos_abc = u1.dot(u2);  double cos_bcd = u2.dot(u3);  double sin_abc=s2(cos_abc);  double sin_bcd=s2(cos_bcd);  double colin = sin_abc * sin_bcd;  value_ = tors_value * colin;  if (bmat) {    double uu,vv,ww,zz;    double r1 = rab;    double r2 = rbc;    double r3 = rcd;#if OLD_BMAT    r1 *= bohr;    r2 *= bohr;    r3 *= bohr;#endif        for (int j=0; j < 3; j++) {      // compute the derivatives for a normal torsion      if (sin_abc > 1.0e-5) uu = z1[j]/(r1*sin_abc);      else  uu = 0.0;      if (sin_bcd > 1.0e-5) zz = z2[j]/(r3*sin_bcd);      else zz = 0.0;      vv = (r1*cos_abc/r2-1.0)*uu-zz*r3*cos_bcd/r2;      // use the chain rule to get the values for the scaled torsion      static int first = 0;      if (first) {          ExEnv::out0() << indent               << scprintf("uu = %12.8f colin = %12.8f sin_abc = %12.8f\n",                           uu, colin, sin_abc)               << indent               << scprintf("tors_value = %12.8f (%12.8f deg)\n", tors_value,                           tors_value * 180.0/M_PI)               << indent               << scprintf("cos_abc = %12.8f cos_bcd = %12.8f\n",                           cos_abc, cos_bcd);        }      uu = uu*colin;      if (sin_abc > 1.0e-5) uu += tors_value                                * (-cos_abc/sin_abc)                                * sin_bcd                                * (u2[j] - cos_abc * u1[j])/rab;      vv = vv*colin;      if (sin_abc > 1.0e-5) vv += tors_value                                * (-cos_abc/sin_abc)                                * sin_bcd                                * ((-u2[j] + cos_abc*u1[j])/rab                                   +(-u1[j] + cos_abc*u2[j])/rbc);      if (sin_bcd > 1.0e-5) vv += tors_value                                * (-cos_bcd/sin_bcd)                                * sin_abc                                * (-u3[j] + cos_bcd * u2[j])/rbc;      zz = zz*colin;      if (sin_bcd > 1.0e-5) zz += tors_value                                * (-cos_bcd/sin_bcd)                                * sin_abc                                * (-u2[j] + cos_bcd * u3[j])/rcd;      ww = -uu-vv-zz;      bmat[a*3+j] += coeff*uu;      bmat[b*3+j] += coeff*vv;      bmat[c*3+j] += coeff*ww;      bmat[d*3+j] += coeff*zz;      if (first) first = 0;    }  }  // save the old value of the torsion so we can make sure the discontinuity  // at -pi/2 doesn't bite us  old_torsion_ = tors_value;  return value_;}doubleScaledTorsSimpleCo::calc_force_con(Molecule& m){  int a=atoms[1]-1; int b=atoms[2]-1;  SCVector3 ra(m.r(a));  SCVector3 rb(m.r(b));  double rad_ab =   m.atominfo()->atomic_radius(m.Z(a))                  + m.atominfo()->atomic_radius(m.Z(b));  double r_ab = ra.dist(rb);  double k = 0.0015 + 14.0*pow(1.0,0.57)/pow((rad_ab*r_ab),4.0) *                           exp(-2.85*(r_ab-rad_ab));#if OLD_BMAT    // return force constant in mdyn*ang/rad^2  return k*4.359813653;#else  return k;#endif  }const char *ScaledTorsSimpleCo::ctype() const{  return "STOR";}doubleScaledTorsSimpleCo::radians() const{  return value_;}doubleScaledTorsSimpleCo::degrees() const{  return value_*rtd;}doubleScaledTorsSimpleCo::preferred_value() const{  return value_*rtd;}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "CLJ"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -