⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tors.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// tors.cc//// Modifications are// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.///* tors.cc -- implementation of the torsion internal coordinate class * *      THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A *      "UNITED STATES GOVERNMENT WORK".  IT WAS WRITTEN AS A PART OF THE *      AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE.  THIS MEANS IT *      CANNOT BE COPYRIGHTED.  THIS SOFTWARE IS FREELY AVAILABLE TO THE *      PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO *      RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. * *  Author: *      E. T. Seidl *      Bldg. 12A, Rm. 2033 *      Computer Systems Laboratory *      Division of Computer Research and Technology *      National Institutes of Health *      Bethesda, Maryland 20892 *      Internet: seidl@alw.nih.gov *      February, 1993 */#include <string.h>#include <math.h>#include <chemistry/molecule/simple.h>#include <chemistry/molecule/localdef.h>using namespace sc;static ClassDesc TorsSimpleCo_cd(  typeid(TorsSimpleCo),"TorsSimpleCo",1,"public SimpleCo",  create<TorsSimpleCo>, create<TorsSimpleCo>, create<TorsSimpleCo>);SimpleCo_IMPL(TorsSimpleCo)TorsSimpleCo::TorsSimpleCo() : SimpleCo(4) {}TorsSimpleCo::TorsSimpleCo(const TorsSimpleCo& s)  : SimpleCo(4){  *this=s;}TorsSimpleCo::TorsSimpleCo(const char *refr, int a1, int a2, int a3, int a4)  : SimpleCo(4,refr){  atoms[0]=a1; atoms[1]=a2; atoms[2]=a3; atoms[3]=a4;}TorsSimpleCo::~TorsSimpleCo(){}TorsSimpleCo::TorsSimpleCo(const Ref<KeyVal> &kv):  SimpleCo(kv,4){}TorsSimpleCo&TorsSimpleCo::operator=(const TorsSimpleCo& s){  if(label_) delete[] label_;  label_=new char[strlen(s.label_)+1];  strcpy(label_,s.label_);  atoms[0]=s.atoms[0]; atoms[1]=s.atoms[1]; atoms[2]=s.atoms[2];  atoms[3]=s.atoms[3];  return *this;}doubleTorsSimpleCo::calc_intco(Molecule& m, double *bmat, double coeff){  int a=atoms[0]-1; int b=atoms[1]-1; int c=atoms[2]-1; int d=atoms[3]-1;  SCVector3 u1,u2,u3,z1,z2;  SCVector3 ra(m.r(a));  SCVector3 rb(m.r(b));  SCVector3 rc(m.r(c));  SCVector3 rd(m.r(d));  u1 = ra-rb;  u1.normalize();  u2 = rc-rb;  u2.normalize();  u3 = rc-rd;  u3.normalize();  z1 = u1.perp_unit(u2);  z2 = u3.perp_unit(u2);  double co=z1.dot(z2);  u1[0]=z1[1]*z2[2]-z1[2]*z2[1];  u1[1]=z1[2]*z2[0]-z1[0]*z2[2];  u1[2]=z1[0]*z2[1]-z1[1]*z2[0];  double co2=u1.dot(u2);  if (co < -1.0) co= -1.0;  if (co > 1.0) co = 1.0;  // save the old value of the torsion so we can make sure the discontinuity  // at -pi/2 doesn't bite us  double oldval = -value_;    value_=(co2<0) ? -acos(-co) : acos(-co);  // ok, we want omega between 3*pi/2 and -pi/2, so if omega is > pi/2  // (omega is eventually -omega), then knock 2pi off of it  if(value_ > pih) value_ -= tpi;  // the following tests to see if the new coordinate has crossed the  // 3pi/2 <--> -pi/2 boundary...if so, then we add or subtract 2pi as  // needed to prevent the transformation from internals to cartesians  // from blowing up  while(oldval-value_ > (pi + 1.0e-8)) value_ += tpi;  while(oldval-value_ < -(pi + 1.0e-8)) value_ -= tpi;  value_ = -value_;  if (bmat) {    double uu,vv,ww,zz;    u1 = ra-rb;    u1.normalize();    u2 = rc-rb;    u2.normalize();    u3 = rc-rd;    u3.normalize();    z1 = u1.perp_unit(u2);    z2 = u3.perp_unit(u2);    co=u1.dot(u2); double si=s2(co);    co2=u2.dot(u3); double si2=s2(co2);    double r1 = ra.dist(rb);    double r2 = rc.dist(rb);    double r3 = rc.dist(rd);#if OLD_BMAT    r1 *= bohr;    r2 *= bohr;    r3 *= bohr;#endif        for (int j=0; j < 3; j++) {      if (si > 1.0e-5) uu = z1[j]/(r1*si);      else uu = 0.0;      if (si2 > 1.0e-5) zz = z2[j]/(r3*si2);      else zz = 0.0;      vv = (r1*co/r2-1.0)*uu-zz*r3*co2/r2;      ww = -uu-vv-zz;      bmat[a*3+j] += coeff*uu;      bmat[b*3+j] += coeff*vv;      bmat[c*3+j] += coeff*ww;      bmat[d*3+j] += coeff*zz;    }  }  return value_;}doubleTorsSimpleCo::calc_force_con(Molecule& m){  int a=atoms[1]-1; int b=atoms[2]-1;  double rad_ab =   m.atominfo()->atomic_radius(m.Z(a))                  + m.atominfo()->atomic_radius(m.Z(b));  SCVector3 ra(m.r(a));  SCVector3 rb(m.r(b));  double r_ab = ra.dist(rb);  double k = 0.0015 + 14.0*pow(1.0,0.57)/pow((rad_ab*r_ab),4.0) *                           exp(-2.85*(r_ab-rad_ab));#if OLD_BMAT    // return force constant in mdyn*ang/rad^2  return k*4.359813653;#else  return k;#endif  }const char *TorsSimpleCo::ctype() const{  return "TORS";}doubleTorsSimpleCo::radians() const{  return value_;}doubleTorsSimpleCo::degrees() const{  return value_*rtd;}doubleTorsSimpleCo::preferred_value() const{  return value_*rtd;}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -