⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cxg2010.a

📁 xml大全 可读写调用率很高 xml大全 可读写调用率很高
💻 A
📖 第 1 页 / 共 2 页
字号:
-- CXG2010.A----                             Grant of Unlimited Rights----     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained --     unlimited rights in the software and documentation contained herein.--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making --     this public release, the Government intends to confer upon all --     recipients unlimited rights  equal to those held by the Government.  --     These rights include rights to use, duplicate, release or disclose the --     released technical data and computer software in whole or in part, in --     any manner and for any purpose whatsoever, and to have or permit others --     to do so.----                                    DISCLAIMER----     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED --     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE --     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A--     PARTICULAR PURPOSE OF SAID MATERIAL.--*---- OBJECTIVE:--      Check that the exp function returns--      results that are within the error bound allowed.---- TEST DESCRIPTION:--      This test contains three test packages that are almost--      identical.  The first two packages differ only in the --      floating point type that is being tested.  The first--      and third package differ only in whether the generic--      elementary functions package or the pre-instantiated--      package is used.--      The test package is not generic so that the arguments--      and expected results for some of the test values--      can be expressed as universal real instead of being--      computed at runtime.---- SPECIAL REQUIREMENTS--      The Strict Mode for the numerical accuracy must be--      selected.  The method by which this mode is selected--      is implementation dependent.---- APPLICABILITY CRITERIA:--      This test applies only to implementations supporting the--      Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.--      This test only applies to the Strict Mode for numerical--      accuracy.------ CHANGE HISTORY:--       1 Mar 96   SAIC    Initial release for 2.1--       2 Sep 96   SAIC    Improved check routine ----!---- References:---- Software Manual for the Elementary Functions-- William J. Cody, Jr. and William Waite-- Prentice-Hall, 1980---- CRC Standard Mathematical Tables-- 23rd Edition ---- Implementation and Testing of Function Software-- W. J. Cody-- Problems and Methodologies in Mathematical Software Production-- editors P. C. Messina and A. Murli-- Lecture Notes in Computer Science   Volume 142-- Springer Verlag, 1982------ Notes on derivation of error bound for exp(p)*exp(-p)---- Let a = true value of exp(p) and ac be the computed value.-- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.-- Similarly, let b = true value of exp(-p) and bc be the computed value.-- Then b = bc(1+e2), where |e2| <= 4*ME.-- -- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME-- -- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =-- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).-- -- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),-- -- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.with System;with Report;with Ada.Numerics.Generic_Elementary_Functions;with Ada.Numerics.Elementary_Functions;procedure CXG2010 is   Verbose : constant Boolean := False;   Max_Samples : constant := 1000;   Accuracy_Error_Reported : Boolean := False;   package Float_Check is      subtype Real is Float;      procedure Do_Test;   end Float_Check;   package body Float_Check is      package Elementary_Functions is new            Ada.Numerics.Generic_Elementary_Functions (Real);      function Sqrt (X : Real) return Real renames           Elementary_Functions.Sqrt;      function Exp (X : Real) return Real renames           Elementary_Functions.Exp;      -- The following value is a lower bound on the accuracy      -- required.  It is normally 0.0 so that the lower bound      -- is computed from Model_Epsilon.  However, for tests      -- where the expected result is only known to a certain      -- amount of precision this bound takes on a non-zero       -- value to account for that level of precision.      Error_Low_Bound : Real := 0.0;      procedure Check (Actual, Expected : Real;                       Test_Name : String;                       MRE : Real) is         Max_Error : Real;         Rel_Error : Real;         Abs_Error : Real;      begin         -- In the case where the expected result is very small or 0         -- we compute the maximum error as a multiple of Model_Epsilon          -- instead of Model_Epsilon and Expected.         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;         Abs_Error := MRE * Real'Model_Epsilon;         if Rel_Error > Abs_Error then            Max_Error := Rel_Error;         else            Max_Error := Abs_Error;         end if;          -- take into account the low bound on the error         if Max_Error < Error_Low_Bound then            Max_Error := Error_Low_Bound;         end if;         if abs (Actual - Expected) > Max_Error then            Accuracy_Error_Reported := True;            Report.Failed (Test_Name &                            " actual: " & Real'Image (Actual) &                           " expected: " & Real'Image (Expected) &                           " difference: " & Real'Image (Actual - Expected) &                           " max err:" & Real'Image (Max_Error) );         elsif Verbose then	    if Actual = Expected then	       Report.Comment (Test_Name & "  exact result");	    else	       Report.Comment (Test_Name & "  passed");	    end if;         end if;      end Check;      procedure Argument_Range_Check_1 (A, B : Real;                                        Test : String) is         -- test a evenly distributed selection of          -- arguments selected from the range A to B. 	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)	 -- The parameter One_Minus_Exp_Minus_V is the value	 --   1.0 - Exp (-V) 	 -- accurate to machine precision.         -- This procedure is a translation of part of Cody's test          X : Real;         Y : Real;	 ZX, ZY : Real;         V : constant := 1.0 / 16.0;         One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;      begin         Accuracy_Error_Reported := False;         for I in 1..Max_Samples loop            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;            Y := X - V;	    if Y < 0.0 then 	       X := Y + V;	    end if;	    ZX := Exp (X);	    ZY := Exp (Y);	    -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);	    -- which simplifies to ZX := Exp (X-V);	    ZX := ZX - ZX * One_Minus_Exp_Minus_V;            -- note that since the expected value is computed, we            -- must take the error in that computation into account.          Check (ZY, ZX,                  "test " & Test & " -" &                 Integer'Image (I) &	     	     " exp (" & Real'Image (X) & ")",                 9.0);           exit when Accuracy_Error_Reported;         end loop;      exception         when Constraint_Error =>             Report.Failed                ("Constraint_Error raised in argument range check 1");         when others =>            Report.Failed ("exception in argument range check 1");      end Argument_Range_Check_1;      procedure Argument_Range_Check_2 (A, B : Real;                                        Test : String) is         -- test a evenly distributed selection of          -- arguments selected from the range A to B. 	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)	 -- The parameter One_Minus_Exp_Minus_V is the value	 --   1.0 - Exp (-V) 	 -- accurate to machine precision.         -- This procedure is a translation of part of Cody's test          X : Real;         Y : Real;	 ZX, ZY : Real;         V : constant := 45.0 / 16.0;            -- 1/16 - Exp(45/16)         Coeff : constant := 2.4453321046920570389E-3;      begin         Accuracy_Error_Reported := False;         for I in 1..Max_Samples loop            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;            Y := X - V;	    if Y < 0.0 then 	       X := Y + V;	    end if;	    ZX := Exp (X);	    ZY := Exp (Y);	    -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;            -- where Coeff is 1/16 - Exp(45/16)	    -- which simplifies to ZX := Exp (X-V);	    ZX := ZX * 0.0625 - ZX * Coeff;            -- note that since the expected value is computed, we            -- must take the error in that computation into account.          Check (ZY, ZX,                  "test " & Test & " -" &                 Integer'Image (I) &                 " exp (" & Real'Image (X) & ")",                 9.0);           exit when Accuracy_Error_Reported;         end loop;      exception         when Constraint_Error =>             Report.Failed                ("Constraint_Error raised in argument range check 2");         when others =>            Report.Failed ("exception in argument range check 2");      end Argument_Range_Check_2;      procedure Do_Test is      begin         --- test 1 ---         declare	    Y : Real;         begin            Y := Exp(1.0);            -- normal accuracy requirements            Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 1");            when others =>               Report.Failed ("exception in test 1");         end;         --- test 2 ---	 declare	    Y : Real;         begin            Y := Exp(16.0) * Exp(-16.0);            Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 2");            when others =>               Report.Failed ("exception in test 2");         end;         --- test 3 ---	 declare            Y : Real;         begin            Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);            Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 3");            when others =>               Report.Failed ("exception in test 3");         end;         --- test 4 ---	 declare            Y : Real;         begin            Y := Exp(0.0);            Check (Y, 1.0, "test 4 -- exp(0.0)",                    0.0);   -- no error allowed         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 4");            when others =>               Report.Failed ("exception in test 4");         end;         --- test 5 ---         -- constants used here only have 19 digits of precision         if Real'Digits > 19 then            Error_Low_Bound := 0.00000_00000_00000_0001;            Report.Comment ("exp accuracy checked to 19 digits");         end if;         Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),                                   1.0,                                   "5");         Error_Low_Bound := 0.0;  -- reset	 --- test 6 ---         -- constants used here only have 19 digits of precision         if Real'Digits > 19 then            Error_Low_Bound := 0.00000_00000_00000_0001;            Report.Comment ("exp accuracy checked to 19 digits");         end if;         Argument_Range_Check_2 (1.0,                                  Sqrt(Real(Real'Machine_Radix)),                                  "6");         Error_Low_Bound := 0.0;  -- reset      end Do_Test;   end Float_Check;   -----------------------------------------------------------------------   -----------------------------------------------------------------------   -- check the floating point type with the most digits   type A_Long_Float is digits System.Max_Digits;   package A_Long_Float_Check is      subtype Real is A_Long_Float;      procedure Do_Test;   end A_Long_Float_Check;   package body A_Long_Float_Check is      package Elementary_Functions is new            Ada.Numerics.Generic_Elementary_Functions (Real);      function Sqrt (X : Real) return Real renames           Elementary_Functions.Sqrt;      function Exp (X : Real) return Real renames           Elementary_Functions.Exp;      -- The following value is a lower bound on the accuracy      -- required.  It is normally 0.0 so that the lower bound      -- is computed from Model_Epsilon.  However, for tests      -- where the expected result is only known to a certain      -- amount of precision this bound takes on a non-zero       -- value to account for that level of precision.      Error_Low_Bound : Real := 0.0;      procedure Check (Actual, Expected : Real;                       Test_Name : String;                       MRE : Real) is         Max_Error : Real;         Rel_Error : Real;         Abs_Error : Real;      begin         -- In the case where the expected result is very small or 0         -- we compute the maximum error as a multiple of Model_Epsilon          -- instead of Model_Epsilon and Expected.         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;         Abs_Error := MRE * Real'Model_Epsilon;         if Rel_Error > Abs_Error then            Max_Error := Rel_Error;         else            Max_Error := Abs_Error;         end if;          -- take into account the low bound on the error         if Max_Error < Error_Low_Bound then            Max_Error := Error_Low_Bound;         end if;         if abs (Actual - Expected) > Max_Error then            Accuracy_Error_Reported := True;            Report.Failed (Test_Name &                            " actual: " & Real'Image (Actual) &                           " expected: " & Real'Image (Expected) &                           " difference: " & Real'Image (Actual - Expected) &                           " max err:" & Real'Image (Max_Error) );         elsif Verbose then	    if Actual = Expected then	       Report.Comment (Test_Name & "  exact result");	    else	       Report.Comment (Test_Name & "  passed");	    end if;         end if;      end Check;      procedure Argument_Range_Check_1 (A, B : Real;                                        Test : String) is         -- test a evenly distributed selection of          -- arguments selected from the range A to B. 	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)	 -- The parameter One_Minus_Exp_Minus_V is the value	 --   1.0 - Exp (-V) 	 -- accurate to machine precision.         -- This procedure is a translation of part of Cody's test          X : Real;         Y : Real;	 ZX, ZY : Real;         V : constant := 1.0 / 16.0;         One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;      begin         Accuracy_Error_Reported := False;         for I in 1..Max_Samples loop            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;            Y := X - V;	    if Y < 0.0 then 	       X := Y + V;	    end if;	    ZX := Exp (X);	    ZY := Exp (Y);	    -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);	    -- which simplifies to ZX := Exp (X-V);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -