⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cxg2003.a

📁 xml大全 可读写调用率很高 xml大全 可读写调用率很高
💻 A
📖 第 1 页 / 共 2 页
字号:
-- CXG2003.A----                             Grant of Unlimited Rights----     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained --     unlimited rights in the software and documentation contained herein.--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making --     this public release, the Government intends to confer upon all --     recipients unlimited rights  equal to those held by the Government.  --     These rights include rights to use, duplicate, release or disclose the --     released technical data and computer software in whole or in part, in --     any manner and for any purpose whatsoever, and to have or permit others --     to do so.----                                    DISCLAIMER----     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED --     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE --     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A--     PARTICULAR PURPOSE OF SAID MATERIAL.--*---- OBJECTIVE:--      Check that the sqrt function returns--      results that are within the error bound allowed.---- TEST DESCRIPTION:--      This test contains three test packages that are almost--      identical.  The first two packages differ only in the --      floating point type that is being tested.  The first--      and third package differ only in whether the generic--      elementary functions package or the pre-instantiated--      package is used.--      The test package is not generic so that the arguments--      and expected results for some of the test values--      can be expressed as universal real instead of being--      computed at runtime.---- SPECIAL REQUIREMENTS--      The Strict Mode for the numerical accuracy must be--      selected.  The method by which this mode is selected--      is implementation dependent.---- APPLICABILITY CRITERIA:--      This test applies only to implementations supporting the--      Numerics Annex.--      This test only applies to the Strict Mode for numerical--      accuracy.------ CHANGE HISTORY:--       2 FEB 96   SAIC    Initial release for 2.1--      18 AUG 96   SAIC    Made Check consistent with other tests.----!with System;with Report;with Ada.Numerics.Generic_Elementary_Functions;with Ada.Numerics.Elementary_Functions;procedure CXG2003 is   Verbose : constant Boolean := False;   package Float_Check is      subtype Real is Float;      procedure Do_Test;   end Float_Check;   package body Float_Check is      package Elementary_Functions is new            Ada.Numerics.Generic_Elementary_Functions (Real);      function Sqrt (X : Real) return Real renames           Elementary_Functions.Sqrt;      function Log (X : Real) return Real renames           Elementary_Functions.Log;      function Exp (X : Real) return Real renames           Elementary_Functions.Exp;      -- The default Maximum Relative Error is the value specified      -- in the LRM.      Default_MRE : constant Real := 2.0;      procedure Check (Actual, Expected : Real;                       Test_Name : String;                       MRE : Real := Default_MRE) is         Rel_Error : Real;         Abs_Error : Real;         Max_Error : Real;      begin         -- In the case where the expected result is very small or 0         -- we compute the maximum error as a multiple of Model_Epsilon instead         -- of Model_Epsilon and Expected.         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;         Abs_Error := MRE * Real'Model_Epsilon;         if Rel_Error > Abs_Error then            Max_Error := Rel_Error;         else            Max_Error := Abs_Error;         end if;          if abs (Actual - Expected) > Max_Error then            Report.Failed (Test_Name &                            " actual: " & Real'Image (Actual) &                           " expected: " & Real'Image (Expected) &                           " difference: " &                            Real'Image (Actual - Expected) &                           " mre:" & Real'Image (Max_Error) );         elsif Verbose then	    if Actual = Expected then	       Report.Comment (Test_Name & "  exact result");	    else	       Report.Comment (Test_Name & "  passed");	    end if;         end if;      end Check;      procedure Argument_Range_Check (A, B : Real;                                      Test : String) is         -- test a logarithmically distributed selection of          -- arguments selected from the range A to B.          X : Real;         Expected : Real;         Y : Real;         C : Real := Log(B/A);         Max_Samples : constant := 1000;      begin         for I in 1..Max_Samples loop            Expected :=  A * Exp(C * Real (I) / Real (Max_Samples));            X := Expected * Expected;            Y := Sqrt (X);            -- note that since the expected value is computed, we            -- must take the error in that computation into account.            Check (Y, Expected,                    "test " & Test & " -" &                   Integer'Image (I) &                   " of argument range",                   3.0);         end loop;      exception         when Constraint_Error =>             Report.Failed                ("Constraint_Error raised in argument range check");         when others =>            Report.Failed ("exception in argument range check");      end Argument_Range_Check;      procedure Do_Test is      begin         --- test 1 ---         declare            T : constant := (Real'Machine_EMax - 1) / 2;            X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);	    Expected : constant := (1.0 * Real'Machine_Radix) ** T;	    Y : Real;         begin            Y := Sqrt (X);            Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 1");            when others =>               Report.Failed ("exception in test 1");         end;         --- test 2 ---	 declare            T : constant := (Real'Model_EMin + 1) / 2;            X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);	    Expected : constant := (1.0 * Real'Machine_Radix) ** T;	    Y : Real;         begin            Y := Sqrt (X);            Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 2");            when others =>               Report.Failed ("exception in test 2");         end;         --- test 3 ---	 declare	    X : constant := 1.0;	    Expected : constant := 1.0;            Y : Real;         begin            Y := Sqrt(X);            Check (Y, Expected, "test 3 -- sqrt(1.0)",                  0.0);   -- no error allowed         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 3");            when others =>               Report.Failed ("exception in test 3");         end;         --- test 4 ---	 declare	    X : constant := 0.0;	    Expected : constant := 0.0;            Y : Real;         begin            Y := Sqrt(X);            Check (Y, Expected, "test 4 -- sqrt(0.0)",                  0.0);   -- no error allowed         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 4");            when others =>               Report.Failed ("exception in test 4");         end;         --- test 5 ---	 declare	    X : constant := -1.0;            Y : Real;         begin            Y := Sqrt(X);            -- the following code should not be executed.            -- The call to Check is to keep the call to Sqrt from            -- appearing to be dead code.            Check (Y, -1.0, "test 5 -- sqrt(-1)" );            Report.Failed ("test 5 - argument_error expected");         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 5");            when Ada.Numerics.Argument_Error =>               if Verbose then                  Report.Comment ("test 5 correctly got argument_error");               end if;            when others =>               Report.Failed ("exception in test 5");         end;         --- test 6 ---	 declare            X : constant := Ada.Numerics.Pi ** 2;	    Expected : constant := Ada.Numerics.Pi;	    Y : Real;         begin            Y := Sqrt (X);            Check (Y, Expected, "test 6 -- sqrt(pi**2)");         exception            when Constraint_Error =>                Report.Failed ("Constraint_Error raised in test 6");            when others =>               Report.Failed ("exception in test 6");         end;         --- test 7 & 8 ---         Argument_Range_Check (1.0/Sqrt(Real(Real'Machine_Radix)),                                 1.0,                                 "7");         Argument_Range_Check (1.0,                                 Sqrt(Real(Real'Machine_Radix)),                                 "8");      end Do_Test;   end Float_Check;   -----------------------------------------------------------------------   -----------------------------------------------------------------------   -- check the floating point type with the most digits   type A_Long_Float is digits System.Max_Digits;   package A_Long_Float_Check is      subtype Real is A_Long_Float;      procedure Do_Test;   end A_Long_Float_Check;   package body A_Long_Float_Check is      package Elementary_Functions is new            Ada.Numerics.Generic_Elementary_Functions (Real);      function Sqrt (X : Real) return Real renames           Elementary_Functions.Sqrt;      function Log (X : Real) return Real renames           Elementary_Functions.Log;      function Exp (X : Real) return Real renames           Elementary_Functions.Exp;      -- The default Maximum Relative Error is the value specified      -- in the LRM.      Default_MRE : constant Real := 2.0;      procedure Check (Actual, Expected : Real;                       Test_Name : String;                       MRE : Real := Default_MRE) is         Rel_Error : Real;         Abs_Error : Real;         Max_Error : Real;      begin         -- In the case where the expected result is very small or 0         -- we compute the maximum error as a multiple of Model_Epsilon instead         -- of Model_Epsilon and Expected.         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;         Abs_Error := MRE * Real'Model_Epsilon;         if Rel_Error > Abs_Error then            Max_Error := Rel_Error;         else            Max_Error := Abs_Error;         end if;          if abs (Actual - Expected) > Max_Error then            Report.Failed (Test_Name &                            " actual: " & Real'Image (Actual) &                           " expected: " & Real'Image (Expected) &                           " difference: " &                            Real'Image (Actual - Expected) &                           " mre:" & Real'Image (Max_Error) );         elsif Verbose then	    if Actual = Expected then	       Report.Comment (Test_Name & "  exact result");	    else	       Report.Comment (Test_Name & "  passed");	    end if;         end if;      end Check;      procedure Argument_Range_Check (A, B : Real;                                      Test : String) is         -- test a logarithmically distributed selection of          -- arguments selected from the range A to B.          X : Real;         Expected : Real;         Y : Real;         C : Real := Log(B/A);         Max_Samples : constant := 1000;      begin         for I in 1..Max_Samples loop            Expected :=  A * Exp(C * Real (I) / Real (Max_Samples));            X := Expected * Expected;            Y := Sqrt (X);            -- note that since the expected value is computed, we            -- must take the error in that computation into account.            Check (Y, Expected,                    "test " & Test & " -" &                   Integer'Image (I) &                   " of argument range",                   3.0);         end loop;      exception

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -