⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 module spharmt.f90

📁 fortran程序
💻 F90
📖 第 1 页 / 共 5 页
字号:
    integer, intent(in)  :: n, mode

    real    :: del, angle,pi
    integer :: imode, nn, nh, i, L, la

      pi = 4.*atan(1.0)
      imode=iabs(mode)
      nn=n
      if (imode.gt.1.and.imode.lt.6) nn=n/2
      del=(pi+pi)/real(nn)
      L=nn+nn
      do i=1,L,2
        angle=0.5*real(i-1)*del
        trigs(i)=cos(angle)
        trigs(i+1)=sin(angle)
      enddo
      if (imode.eq.1) return
      if (imode.eq.8) return

      del=0.5*del
      nh=(nn+1)/2
      L=nh+nh
      la=nn+nn
      do i=1,L,2
        angle=0.5*real(i-1)*del
        trigs(la+i)=cos(angle)
        trigs(la+i+1)=sin(angle)
      enddo
      if (imode.le.3) return

      del=0.5*del
      la=la+nn
    if (mode.ne.5) then
      do i=2,nn
        angle=real(i-1)*del
        trigs(la+i)=2.0*sin(angle)
      enddo
      return
    endif

      del=0.5*del
      do i=2,n
        angle=real(i-1)*del
        trigs(la+i)=sin(angle)
      enddo

 end subroutine fftrig

!##########################################################################

 subroutine vpassm (a,b,c,d,trigs,inc1,inc2,inc3,inc4,lot,n,ifac,la)
    integer, intent(in)  :: inc1, inc2, inc3, inc4, lot, n, ifac, la
    real,    intent(in)  :: a(n),b(n),trigs(n)
    real,    intent(out) :: c(n),d(n)
!
!     subroutine "vpassm" - multiple version of "vpassa"
!     performs one pass through data
!     as part of multiple complex fft routine
!     a is first real input vector
!     b is first imaginary input vector
!     c is first real output vector
!     d is first imaginary output vector
!     trigs is precalculated table of sines " cosines
!     inc1 is addressing increment for a and b
!     inc2 is addressing increment for c and d
!     inc3 is addressing increment between a"s & b"s
!     inc4 is addressing increment between c"s & d"s
!     lot is the number of vectors
!     n is length of vectors
!     ifac is current factor of n
!     la is product of previous factors
!

    real :: sin36=0.587785252292473
    real :: cos36=0.809016994374947
    real :: sin72=0.951056516295154
    real :: cos72=0.309016994374947
    real :: sin60=0.866025403784437

    integer :: i, j, k, L, m, iink, jink, jump, ibase, jbase, igo, ijk, la1
    integer :: ia, ja, ib, jb, kb, ic, jc, kc, id, jd, kd, ie, je, ke
    real    :: c1, s1, c2, s2, c3, s3, c4, s4

      m=n/ifac
      iink=m*inc1
      jink=la*inc2
      jump=(ifac-1)*jink
      ibase=0
      jbase=0
      igo=ifac-1
      if (igo.gt.4) return
!del  go to (10,50,90,130),igo

  select case (igo)

!   coding for factor 2

    case (1)
   10 ia=1
      ja=1
      ib=ia+iink
      jb=ja+jink
      do 20 L=1,la
      i=ibase
      j=jbase
      do 15 ijk=1,lot
      c(ja+j)=a(ia+i)+a(ib+i)
      d(ja+j)=b(ia+i)+b(ib+i)
      c(jb+j)=a(ia+i)-a(ib+i)
      d(jb+j)=b(ia+i)-b(ib+i)
      i=i+inc3
      j=j+inc4
   15 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
   20 continue
      if (la.eq.m) return
      la1=la+1
      jbase=jbase+jump
      do 40 k=la1,m,la
      kb=k+k-2
      c1=trigs(kb+1)
      s1=trigs(kb+2)
      do 30 L=1,la
      i=ibase
      j=jbase
      do 25 ijk=1,lot
      c(ja+j)=a(ia+i)+a(ib+i)
      d(ja+j)=b(ia+i)+b(ib+i)
      c(jb+j)=c1*(a(ia+i)-a(ib+i))-s1*(b(ia+i)-b(ib+i))
      d(jb+j)=s1*(a(ia+i)-a(ib+i))+c1*(b(ia+i)-b(ib+i))
      i=i+inc3
      j=j+inc4
   25 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
   30 continue
      jbase=jbase+jump
   40 continue
!     return

!   coding for factor 3

    case (2)
   50 ia=1
      ja=1
      ib=ia+iink
      jb=ja+jink
      ic=ib+iink
      jc=jb+jink
      do 60 L=1,la
      i=ibase
      j=jbase
      do 55 ijk=1,lot
      c(ja+j)=a(ia+i)+(a(ib+i)+a(ic+i))
      d(ja+j)=b(ia+i)+(b(ib+i)+b(ic+i))
      c(jb+j)=(a(ia+i)-0.5*(a(ib+i)+a(ic+i)))-(sin60*(b(ib+i)-b(ic+i)))
      c(jc+j)=(a(ia+i)-0.5*(a(ib+i)+a(ic+i)))+(sin60*(b(ib+i)-b(ic+i)))
      d(jb+j)=(b(ia+i)-0.5*(b(ib+i)+b(ic+i)))+(sin60*(a(ib+i)-a(ic+i)))
      d(jc+j)=(b(ia+i)-0.5*(b(ib+i)+b(ic+i)))-(sin60*(a(ib+i)-a(ic+i)))
      i=i+inc3
      j=j+inc4
   55 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
   60 continue
      if (la.eq.m) return
      la1=la+1
      jbase=jbase+jump
      do 80 k=la1,m,la
      kb=k+k-2
      kc=kb+kb
      c1=trigs(kb+1)
      s1=trigs(kb+2)
      c2=trigs(kc+1)
      s2=trigs(kc+2)
      do 70 L=1,la
      i=ibase
      j=jbase
      do 65 ijk=1,lot
      c(ja+j)=a(ia+i)+(a(ib+i)+a(ic+i))
      d(ja+j)=b(ia+i)+(b(ib+i)+b(ic+i))
      c(jb+j)=                                                           &
          c1*((a(ia+i)-0.5*(a(ib+i)+a(ic+i)))-(sin60*(b(ib+i)-b(ic+i)))) &
         -s1*((b(ia+i)-0.5*(b(ib+i)+b(ic+i)))+(sin60*(a(ib+i)-a(ic+i))))
      d(jb+j)=                                                           &
          s1*((a(ia+i)-0.5*(a(ib+i)+a(ic+i)))-(sin60*(b(ib+i)-b(ic+i)))) &
         +c1*((b(ia+i)-0.5*(b(ib+i)+b(ic+i)))+(sin60*(a(ib+i)-a(ic+i))))
      c(jc+j)=                                                           &
          c2*((a(ia+i)-0.5*(a(ib+i)+a(ic+i)))+(sin60*(b(ib+i)-b(ic+i)))) &
         -s2*((b(ia+i)-0.5*(b(ib+i)+b(ic+i)))-(sin60*(a(ib+i)-a(ic+i))))
      d(jc+j)=                                                           &
          s2*((a(ia+i)-0.5*(a(ib+i)+a(ic+i)))+(sin60*(b(ib+i)-b(ic+i)))) &
         +c2*((b(ia+i)-0.5*(b(ib+i)+b(ic+i)))-(sin60*(a(ib+i)-a(ic+i))))
      i=i+inc3
      j=j+inc4
   65 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
   70 continue
      jbase=jbase+jump
   80 continue
!     return

!   coding for factor 4

    case (3)
   90 ia=1
      ja=1
      ib=ia+iink
      jb=ja+jink
      ic=ib+iink
      jc=jb+jink
      id=ic+iink
      jd=jc+jink
      do 100 L=1,la
      i=ibase
      j=jbase
      do 95 ijk=1,lot
      c(ja+j)=(a(ia+i)+a(ic+i))+(a(ib+i)+a(id+i))
      c(jc+j)=(a(ia+i)+a(ic+i))-(a(ib+i)+a(id+i))
      d(ja+j)=(b(ia+i)+b(ic+i))+(b(ib+i)+b(id+i))
      d(jc+j)=(b(ia+i)+b(ic+i))-(b(ib+i)+b(id+i))
      c(jb+j)=(a(ia+i)-a(ic+i))-(b(ib+i)-b(id+i))
      c(jd+j)=(a(ia+i)-a(ic+i))+(b(ib+i)-b(id+i))
      d(jb+j)=(b(ia+i)-b(ic+i))+(a(ib+i)-a(id+i))
      d(jd+j)=(b(ia+i)-b(ic+i))-(a(ib+i)-a(id+i))
      i=i+inc3
      j=j+inc4
   95 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
  100 continue
      if (la.eq.m) return
      la1=la+1
      jbase=jbase+jump
      do 120 k=la1,m,la
      kb=k+k-2
      kc=kb+kb
      kd=kc+kb
      c1=trigs(kb+1)
      s1=trigs(kb+2)
      c2=trigs(kc+1)
      s2=trigs(kc+2)
      c3=trigs(kd+1)
      s3=trigs(kd+2)
      do 110 L=1,la
      i=ibase
      j=jbase
      do 105 ijk=1,lot
      c(ja+j)=(a(ia+i)+a(ic+i))+(a(ib+i)+a(id+i))
      d(ja+j)=(b(ia+i)+b(ic+i))+(b(ib+i)+b(id+i))
      c(jc+j)=                                     &
          c2*((a(ia+i)+a(ic+i))-(a(ib+i)+a(id+i))) &
         -s2*((b(ia+i)+b(ic+i))-(b(ib+i)+b(id+i)))
      d(jc+j)=                                     &
          s2*((a(ia+i)+a(ic+i))-(a(ib+i)+a(id+i))) &
         +c2*((b(ia+i)+b(ic+i))-(b(ib+i)+b(id+i)))
      c(jb+j)=                                     &
          c1*((a(ia+i)-a(ic+i))-(b(ib+i)-b(id+i))) &
         -s1*((b(ia+i)-b(ic+i))+(a(ib+i)-a(id+i)))
      d(jb+j)=                                     &
          s1*((a(ia+i)-a(ic+i))-(b(ib+i)-b(id+i))) &
         +c1*((b(ia+i)-b(ic+i))+(a(ib+i)-a(id+i)))
      c(jd+j)=                                     &
          c3*((a(ia+i)-a(ic+i))+(b(ib+i)-b(id+i))) &
         -s3*((b(ia+i)-b(ic+i))-(a(ib+i)-a(id+i)))
      d(jd+j)=                                     &
          s3*((a(ia+i)-a(ic+i))+(b(ib+i)-b(id+i))) &
         +c3*((b(ia+i)-b(ic+i))-(a(ib+i)-a(id+i)))
      i=i+inc3
      j=j+inc4
  105 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
  110 continue
      jbase=jbase+jump
  120 continue
!     return

!   coding for factor 5

    case (4)
  130 ia=1
      ja=1
      ib=ia+iink
      jb=ja+jink
      ic=ib+iink
      jc=jb+jink
      id=ic+iink
      jd=jc+jink
      ie=id+iink
      je=jd+jink
      do 140 L=1,la
      i=ibase
      j=jbase
      do 135 ijk=1,lot
      c(ja+j)=a(ia+i)+(a(ib+i)+a(ie+i))+(a(ic+i)+a(id+i))
      d(ja+j)=b(ia+i)+(b(ib+i)+b(ie+i))+(b(ic+i)+b(id+i))
      c(jb+j)=(a(ia+i)+cos72*(a(ib+i)+a(ie+i))-cos36*(a(ic+i)+a(id+i))) &
        -(sin72*(b(ib+i)-b(ie+i))+sin36*(b(ic+i)-b(id+i)))
      c(je+j)=(a(ia+i)+cos72*(a(ib+i)+a(ie+i))-cos36*(a(ic+i)+a(id+i))) &
        +(sin72*(b(ib+i)-b(ie+i))+sin36*(b(ic+i)-b(id+i)))
      d(jb+j)=(b(ia+i)+cos72*(b(ib+i)+b(ie+i))-cos36*(b(ic+i)+b(id+i))) &
        +(sin72*(a(ib+i)-a(ie+i))+sin36*(a(ic+i)-a(id+i)))
      d(je+j)=(b(ia+i)+cos72*(b(ib+i)+b(ie+i))-cos36*(b(ic+i)+b(id+i))) &
        -(sin72*(a(ib+i)-a(ie+i))+sin36*(a(ic+i)-a(id+i)))
      c(jc+j)=(a(ia+i)-cos36*(a(ib+i)+a(ie+i))+cos72*(a(ic+i)+a(id+i))) &
        -(sin36*(b(ib+i)-b(ie+i))-sin72*(b(ic+i)-b(id+i)))
      c(jd+j)=(a(ia+i)-cos36*(a(ib+i)+a(ie+i))+cos72*(a(ic+i)+a(id+i))) &
        +(sin36*(b(ib+i)-b(ie+i))-sin72*(b(ic+i)-b(id+i)))
      d(jc+j)=(b(ia+i)-cos36*(b(ib+i)+b(ie+i))+cos72*(b(ic+i)+b(id+i))) &
        +(sin36*(a(ib+i)-a(ie+i))-sin72*(a(ic+i)-a(id+i)))
      d(jd+j)=(b(ia+i)-cos36*(b(ib+i)+b(ie+i))+cos72*(b(ic+i)+b(id+i))) &
        -(sin36*(a(ib+i)-a(ie+i))-sin72*(a(ic+i)-a(id+i)))
      i=i+inc3
      j=j+inc4
  135 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
  140 continue
      if (la.eq.m) return
      la1=la+1
      jbase=jbase+jump
      do 160 k=la1,m,la
      kb=k+k-2
      kc=kb+kb
      kd=kc+kb
      ke=kd+kb
      c1=trigs(kb+1)
      s1=trigs(kb+2)
      c2=trigs(kc+1)
      s2=trigs(kc+2)
      c3=trigs(kd+1)
      s3=trigs(kd+2)
      c4=trigs(ke+1)
      s4=trigs(ke+2)
      do 150 L=1,la
      i=ibase
      j=jbase
      do 145 ijk=1,lot
      c(ja+j)=a(ia+i)+(a(ib+i)+a(ie+i))+(a(ic+i)+a(id+i))
      d(ja+j)=b(ia+i)+(b(ib+i)+b(ie+i))+(b(ic+i)+b(id+i))
      c(jb+j)=                                                          &
          c1*((a(ia+i)+cos72*(a(ib+i)+a(ie+i))-cos36*(a(ic+i)+a(id+i))) &
            -(sin72*(b(ib+i)-b(ie+i))+sin36*(b(ic+i)-b(id+i))))         &
         -s1*((b(ia+i)+cos72*(b(ib+i)+b(ie+i))-cos36*(b(ic+i)+b(id+i))) &
            +(sin72*(a(ib+i)-a(ie+i))+sin36*(a(ic+i)-a(id+i))))
      d(jb+j)=                                                          &
          s1*((a(ia+i)+cos72*(a(ib+i)+a(ie+i))-cos36*(a(ic+i)+a(id+i))) &
            -(sin72*(b(ib+i)-b(ie+i))+sin36*(b(ic+i)-b(id+i))))         &
         +c1*((b(ia+i)+cos72*(b(ib+i)+b(ie+i))-cos36*(b(ic+i)+b(id+i))) &
            +(sin72*(a(ib+i)-a(ie+i))+sin36*(a(ic+i)-a(id+i))))
      c(je+j)=                                                          &
          c4*((a(ia+i)+cos72*(a(ib+i)+a(ie+i))-cos36*(a(ic+i)+a(id+i))) &
            +(sin72*(b(ib+i)-b(ie+i))+sin36*(b(ic+i)-b(id+i))))         &
         -s4*((b(ia+i)+cos72*(b(ib+i)+b(ie+i))-cos36*(b(ic+i)+b(id+i))) &
            -(sin72*(a(ib+i)-a(ie+i))+sin36*(a(ic+i)-a(id+i))))
      d(je+j)=                                                          &
          s4*((a(ia+i)+cos72*(a(ib+i)+a(ie+i))-cos36*(a(ic+i)+a(id+i))) &
            +(sin72*(b(ib+i)-b(ie+i))+sin36*(b(ic+i)-b(id+i))))         &
         +c4*((b(ia+i)+cos72*(b(ib+i)+b(ie+i))-cos36*(b(ic+i)+b(id+i))) &
            -(sin72*(a(ib+i)-a(ie+i))+sin36*(a(ic+i)-a(id+i))))
      c(jc+j)=                                                          &
          c2*((a(ia+i)-cos36*(a(ib+i)+a(ie+i))+cos72*(a(ic+i)+a(id+i))) &
            -(sin36*(b(ib+i)-b(ie+i))-sin72*(b(ic+i)-b(id+i))))         &
         -s2*((b(ia+i)-cos36*(b(ib+i)+b(ie+i))+cos72*(b(ic+i)+b(id+i))) &
            +(sin36*(a(ib+i)-a(ie+i))-sin72*(a(ic+i)-a(id+i))))
      d(jc+j)=                                                          &
          s2*((a(ia+i)-cos36*(a(ib+i)+a(ie+i))+cos72*(a(ic+i)+a(id+i))) &
            -(sin36*(b(ib+i)-b(ie+i))-sin72*(b(ic+i)-b(id+i))))         &
         +c2*((b(ia+i)-cos36*(b(ib+i)+b(ie+i))+cos72*(b(ic+i)+b(id+i))) &
            +(sin36*(a(ib+i)-a(ie+i))-sin72*(a(ic+i)-a(id+i))))
      c(jd+j)=                                                          &
          c3*((a(ia+i)-cos36*(a(ib+i)+a(ie+i))+cos72*(a(ic+i)+a(id+i))) &
            +(sin36*(b(ib+i)-b(ie+i))-sin72*(b(ic+i)-b(id+i))))         &
         -s3*((b(ia+i)-cos36*(b(ib+i)+b(ie+i))+cos72*(b(ic+i)+b(id+i))) &
            -(sin36*(a(ib+i)-a(ie+i))-sin72*(a(ic+i)-a(id+i))))
      d(jd+j)=                                                          &
          s3*((a(ia+i)-cos36*(a(ib+i)+a(ie+i))+cos72*(a(ic+i)+a(id+i))) &
            +(sin36*(b(ib+i)-b(ie+i))-sin72*(b(ic+i)-b(id+i))))         &
         +c3*((b(ia+i)-cos36*(b(ib+i)+b(ie+i))+cos72*(b(ic+i)+b(id+i))) &
            -(sin36*(a(ib+i)-a(ie+i))-sin72*(a(ic+i)-a(id+i))))
      i=i+inc3
      j=j+inc4
  145 continue
      ibase=ibase+inc1
      jbase=jbase+inc2
  150 continue
      jbase=jbase+jump
  160 continue

  end select

 end subroutine vpassm

end module spharmt


!Welcome!

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -