📄 root_int.m
字号:
function S=root_int(x,alpha,beta,h,interp_order,par)% function S=root_int(x,alpha,beta,h,interp_order,par)% INPUT:% x steady state solution in R^n% alpha alpha-LMS parameters in R^k% beta beta-LMS parameters in R^k% h absolute stepsize > 0% interp_order order of interpolation in the past% par current parameter values in R^p% % OUTPUT:% S first n rows of integration operator S(h) in R^(n x L)% (c) DDE-BIFTOOL v. 2.00, 23/11/2001tp_del=nargin('sys_tau');if tp_del==0 tau=par(sys_tau); m=length(tau); xx=x; for j=1:m xx=[xx x]; end;else m=sys_ntau; xx=x; for j=1:m tau(j)=sys_tau(j,xx,par); xx=[xx x]; end;end;n=length(x);k=length(alpha);% present terms:A=sys_deri(xx,par,0,[],[]);if abs(beta(k))>0 fac=inv(alpha(k)*eye(n)-h*beta(k)*A);else fac=eye(n)/alpha(k);end;for j=1:k-1 S(1:n,(j-1)*n+(1:n))=fac*(-alpha(k-j)*eye(n)+h*beta(k-j)*A);end;% past terms:interp_degree=interp_order-1;s=ceil(interp_degree/2);r=floor(interp_degree/2);for p=1:m B=sys_deri(xx,par,p,[],[]); l=ceil(tau(p)/h); if s>l-2 ss=l-2; rr=interp_order-ss; else ss=s; rr=r; end; epsi=l-tau(p)/h; gamma_vect=time_nrd(epsi,rr,ss); if size(S,2)<(l+rr+k-1)*n S=[S zeros(n,(l+rr+k-1)*n-size(S,2))]; end; for j=1:k for o=-ss:rr S(1:n,(l+o-j+k-1)*n+(1:n))=S(1:n,(l+o-j+k-1)*n+(1:n)) + ... h*beta(j)*gamma_vect(rr+1-o)*fac*B; end; end; end;return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -