⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mathx.java

📁 java 读写word excel ppt
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
     * <li>n is negative and s is positive</li>     * <li>n is positive and s is negative</li>     * </ul>     * In all such cases, Double.NaN is returned.     * @param n     * @param s     * @return     */    public static double ceiling(double n, double s) {        double c;                if ((n<0 && s>0) || (n>0 && s<0)) {            c = Double.NaN;        }        else {            c = (n == 0 || s == 0) ? 0 : Math.ceil(n/s) * s;        }                return c;    }        /**     * <br/> for all n >= 1; factorial n = n * (n-1) * (n-2) * ... * 1      * <br/> else if n == 0; factorial n = 1     * <br/> else if n < 0; factorial n = Double.NaN     * <br/> Loss of precision can occur if n is large enough.     * If n is large so that the resulting value would be greater      * than Double.MAX_VALUE; Double.POSITIVE_INFINITY is returned.     * If n < 0, Double.NaN is returned.      * @param n     * @return     */    public static double factorial(int n) {        double d = 1;                if (n >= 0) {            if (n <= 170) {                for (int i=1; i<=n; i++) {                    d *= i;                }            }            else {                d = Double.POSITIVE_INFINITY;            }        }        else {            d = Double.NaN;        }        return d;    }        /**     * returns the remainder resulting from operation:     * n / d.      * <br/> The result has the sign of the divisor.     * <br/> Examples:     * <ul>     * <li>mod(3.4, 2) = 1.4</li>     * <li>mod(-3.4, 2) = 0.6</li>     * <li>mod(-3.4, -2) = -1.4</li>     * <li>mod(3.4, -2) = -0.6</li>     * </ul>     * If d == 0, result is NaN     * @param n     * @param d     * @return     */    public static double mod(double n, double d) {        double result = 0;                if (d == 0) {            result = Double.NaN;        }        else if (sign(n) == sign(d)) {            double t = Math.abs(n / d);            t = t - (long) t;            result = sign(d) * Math.abs(t * d);        }        else {            double t = Math.abs(n / d);            t = t - (long) t;            t = Math.ceil(t) - t;            result = sign(d) * Math.abs(t * d);        }                return result;    }            /**     * inverse hyperbolic cosine     * @param d     * @return     */    public static double acosh(double d) {        return Math.log(Math.sqrt(Math.pow(d, 2) - 1) + d);    }        /**     * inverse hyperbolic sine     * @param d     * @return     */    public static double asinh(double d) {        double d2 = d*d;        return Math.log(Math.sqrt(d*d + 1) + d);    }        /**     * inverse hyperbolic tangent     * @param d     * @return     */    public static double atanh(double d) {        return Math.log((1 + d)/(1 - d)) / 2;    }        /**     * hyperbolic cosine     * @param d     * @return     */    public static double cosh(double d) {        double ePowX = Math.pow(Math.E, d);        double ePowNegX = Math.pow(Math.E, -d);        d = (ePowX + ePowNegX) / 2;        return d;    }        /**     * hyperbolic sine     * @param d     * @return     */    public static double sinh(double d) {        double ePowX = Math.pow(Math.E, d);        double ePowNegX = Math.pow(Math.E, -d);        d = (ePowX - ePowNegX) / 2;        return d;    }        /**     * hyperbolic tangent     * @param d     * @return     */    public static double tanh(double d) {        double ePowX = Math.pow(Math.E, d);        double ePowNegX = Math.pow(Math.E, -d);        d = (ePowX - ePowNegX) / (ePowX + ePowNegX);        return d;    }        /**     * returns the sum of product of corresponding double value in each     * subarray. It is the responsibility of the caller to ensure that     * all the subarrays are of equal length. If the subarrays are     * not of equal length, the return value can be unpredictable.     * @param arrays     * @return     */    public static double sumproduct(double[][] arrays) {        double d = 0;                try {            int narr = arrays.length;            int arrlen = arrays[0].length;                         for (int j=0; j<arrlen; j++) {                double t = 1;                for (int i=0; i<narr; i++) {                    t *= arrays[i][j];                }                d += t;            }                    }        catch (ArrayIndexOutOfBoundsException ae) {            d = Double.NaN;        }                return d;    }        /**     * returns the sum of difference of squares of corresponding double      * value in each subarray: ie. sigma (xarr[i]^2-yarr[i]^2)      * <br/>     * It is the responsibility of the caller      * to ensure that the two subarrays are of equal length. If the      * subarrays are not of equal length, the return value can be      * unpredictable.     * @param arrays     * @return     */    public static double sumx2my2(double[] xarr, double[] yarr) {        double d = 0;                try {            for (int i=0, iSize=xarr.length; i<iSize; i++) {                d += (xarr[i] + yarr[i]) * (xarr[i] - yarr[i]);            }                    }        catch (ArrayIndexOutOfBoundsException ae) {            d = Double.NaN;        }                return d;    }        /**     * returns the sum of sum of squares of corresponding double      * value in each subarray: ie. sigma (xarr[i]^2 + yarr[i]^2)      * <br/>     * It is the responsibility of the caller      * to ensure that the two subarrays are of equal length. If the      * subarrays are not of equal length, the return value can be      * unpredictable.     * @param arrays     * @return     */    public static double sumx2py2(double[] xarr, double[] yarr) {        double d = 0;                try {            for (int i=0, iSize=xarr.length; i<iSize; i++) {                d += (xarr[i] * xarr[i]) + (yarr[i] * yarr[i]);            }                    }        catch (ArrayIndexOutOfBoundsException ae) {            d = Double.NaN;        }                return d;    }        /**     * returns the sum of squares of difference of corresponding double      * value in each subarray: ie. sigma ( (xarr[i]-yarr[i])^2 )      * <br/>     * It is the responsibility of the caller      * to ensure that the two subarrays are of equal length. If the      * subarrays are not of equal length, the return value can be      * unpredictable.     * @param arrays     * @return     */    public static double sumxmy2(double[] xarr, double[] yarr) {        double d = 0;                try {            for (int i=0, iSize=xarr.length; i<iSize; i++) {                double t = (xarr[i] - yarr[i]);                d += t * t;            }                    }        catch (ArrayIndexOutOfBoundsException ae) {            d = Double.NaN;        }                return d;    }        /**     * returns the total number of combinations possible when     * k items are chosen out of total of n items. If the number     * is too large, loss of precision may occur (since returned     * value is double). If the returned value is larger than     * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned.     * If either of the parameters is negative, Double.NaN is returned.     * @param n     * @param k     * @return     */    public static double nChooseK(int n, int k) {        double d = 1;        if (n<0 || k<0 || n<k) {            d= Double.NaN;        }        else {            int minnk = Math.min(n-k, k);            int maxnk = Math.max(n-k, k);            for (int i=maxnk; i<n; i++) {                d *= i+1;            }            d /= factorial(minnk);        }                return d;    }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -