📄 tree.h
字号:
tmp->next_sibling=position.node->next_sibling; position.node->next_sibling=tmp; if(tmp->next_sibling==0) { if(tmp->parent) // when adding nodes at the head, there is no parent tmp->parent->last_child=tmp; } else { tmp->next_sibling->prev_sibling=tmp; } return tmp; }template <class T, class tree_node_allocator>template <class iter>iter tree<T, tree_node_allocator>::insert_subtree(iter position, const iterator_base& subtree) { // insert dummy iter it=insert(position, value_type()); // replace dummy with subtree return replace(it, subtree); }// template <class T, class tree_node_allocator>// template <class iter>// iter tree<T, tree_node_allocator>::insert_subtree(sibling_iterator position, iter subtree)// {// // insert dummy// iter it(insert(position, value_type()));// // replace dummy with subtree// return replace(it, subtree);// }template <class T, class tree_node_allocator>template <class iter>iter tree<T, tree_node_allocator>::replace(iter position, const T& x) { kp::destructor(&position.node->data); kp::constructor(&position.node->data, x); return position; }template <class T, class tree_node_allocator>template <class iter>iter tree<T, tree_node_allocator>::replace(iter position, const iterator_base& from) { assert(position.node!=head); tree_node *current_from=from.node; tree_node *start_from=from.node; tree_node *current_to =position.node; // replace the node at position with head of the replacement tree at from erase_children(position); tree_node* tmp = alloc_.allocate(1,0); kp::constructor(&tmp->data, (*from)); tmp->first_child=0; tmp->last_child=0; if(current_to->prev_sibling==0) { current_to->parent->first_child=tmp; } else { current_to->prev_sibling->next_sibling=tmp; } tmp->prev_sibling=current_to->prev_sibling; if(current_to->next_sibling==0) { current_to->parent->last_child=tmp; } else { current_to->next_sibling->prev_sibling=tmp; } tmp->next_sibling=current_to->next_sibling; tmp->parent=current_to->parent; kp::destructor(¤t_to->data); alloc_.deallocate(current_to,1); current_to=tmp; // only at this stage can we fix 'last' tree_node *last=from.node->next_sibling; pre_order_iterator toit=tmp; // copy all children do { assert(current_from!=0); if(current_from->first_child != 0) { current_from=current_from->first_child; toit=append_child(toit, current_from->data); } else { while(current_from->next_sibling==0 && current_from!=start_from) { current_from=current_from->parent; toit=parent(toit); assert(current_from!=0); } current_from=current_from->next_sibling; if(current_from!=last) { toit=append_child(parent(toit), current_from->data); } } } while(current_from!=last); return current_to; }template <class T, class tree_node_allocator>typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::replace( sibling_iterator orig_begin, sibling_iterator orig_end, sibling_iterator new_begin, sibling_iterator new_end) { tree_node *orig_first=orig_begin.node; tree_node *new_first=new_begin.node; tree_node *orig_last=orig_first; while((++orig_begin)!=orig_end) orig_last=orig_last->next_sibling; tree_node *new_last=new_first; while((++new_begin)!=new_end) new_last=new_last->next_sibling; // insert all siblings in new_first..new_last before orig_first bool first=true; pre_order_iterator ret; while(1==1) { pre_order_iterator tt=insert_subtree(pre_order_iterator(orig_first), pre_order_iterator(new_first)); if(first) { ret=tt; first=false; } if(new_first==new_last) break; new_first=new_first->next_sibling; } // erase old range of siblings bool last=false; tree_node *next=orig_first; while(1==1) { if(next==orig_last) last=true; next=next->next_sibling; erase((pre_order_iterator)orig_first); if(last) break; orig_first=next; } return ret; }template <class T, class tree_node_allocator>template <typename iter>iter tree<T, tree_node_allocator>::flatten(iter position) { if(position.node->first_child==0) return position; tree_node *tmp=position.node->first_child; while(tmp) { tmp->parent=position.node->parent; tmp=tmp->next_sibling; } if(position.node->next_sibling) { position.node->last_child->next_sibling=position.node->next_sibling; position.node->next_sibling->prev_sibling=position.node->last_child; } else { position.node->parent->last_child=position.node->last_child; } position.node->next_sibling=position.node->first_child; position.node->next_sibling->prev_sibling=position.node; position.node->first_child=0; position.node->last_child=0; return position; }template <class T, class tree_node_allocator>template <typename iter>iter tree<T, tree_node_allocator>::reparent(iter position, sibling_iterator begin, sibling_iterator end) { tree_node *first=begin.node; tree_node *last=first; if(begin==end) return begin; // determine last node while((++begin)!=end) { last=last->next_sibling; } // move subtree if(first->prev_sibling==0) { first->parent->first_child=last->next_sibling; } else { first->prev_sibling->next_sibling=last->next_sibling; } if(last->next_sibling==0) { last->parent->last_child=first->prev_sibling; } else { last->next_sibling->prev_sibling=first->prev_sibling; } if(position.node->first_child==0) { position.node->first_child=first; position.node->last_child=last; first->prev_sibling=0; } else { position.node->last_child->next_sibling=first; first->prev_sibling=position.node->last_child; position.node->last_child=last; } last->next_sibling=0; tree_node *pos=first; while(1==1) { pos->parent=position.node; if(pos==last) break; pos=pos->next_sibling; } return first; }template <class T, class tree_node_allocator>template <typename iter> iter tree<T, tree_node_allocator>::reparent(iter position, iter from) { if(from.node->first_child==0) return position; return reparent(position, from.node->first_child, end(from)); }template <class T, class tree_node_allocator>template <typename iter> iter tree<T, tree_node_allocator>::move_before(iter target, iter source) { tree_node *dst=target.node; tree_node *src=source.node; assert(dst); assert(src); if(dst==src) return source; // take src out of the tree if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling; else src->parent->first_child=src->next_sibling; if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling; else src->parent->last_child=src->prev_sibling; // connect it to the new point if(dst->prev_sibling!=0) dst->prev_sibling->next_sibling=src; else dst->parent->first_child=src; src->prev_sibling=dst->prev_sibling; dst->prev_sibling=src; src->next_sibling=dst; src->parent=dst->parent; return src; }template <class T, class tree_node_allocator>template <typename iter> iter tree<T, tree_node_allocator>::move_ontop(iter target, iter source) { tree_node *dst=target.node; tree_node *src=source.node; assert(dst); assert(src); if(dst==src) return source; // remember connection points tree_node *b_prev_sibling=dst->prev_sibling; tree_node *b_next_sibling=dst->next_sibling; tree_node *b_parent=dst->parent; // remove target erase(target); // take src out of the tree if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling; else src->parent->first_child=src->next_sibling; if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling; else src->parent->last_child=src->prev_sibling; // connect it to the new point if(b_prev_sibling!=0) b_prev_sibling->next_sibling=src; else b_parent->first_child=src; if(b_next_sibling!=0) b_next_sibling->prev_sibling=src; else b_parent->last_child=src; src->prev_sibling=b_prev_sibling; src->next_sibling=b_next_sibling; src->parent=b_parent; return src; }template <class T, class tree_node_allocator>void tree<T, tree_node_allocator>::merge(sibling_iterator to1, sibling_iterator to2, sibling_iterator from1, sibling_iterator from2, bool duplicate_leaves) { sibling_iterator fnd; while(from1!=from2) { if((fnd=std::find(to1, to2, (*from1))) != to2) { // element found if(from1.begin()==from1.end()) { // full depth reached if(duplicate_leaves) append_child(parent(to1), (*from1)); } else { // descend further merge(fnd.begin(), fnd.end(), from1.begin(), from1.end(), duplicate_leaves); } } else { // element missing insert_subtree(to2, from1); } ++from1; } }template <class T, class tree_node_allocator>void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to, bool deep) { std::less<T> comp; sort(from, to, comp, deep); }template <class T, class tree_node_allocator>template <class StrictWeakOrdering>void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to, StrictWeakOrdering comp, bool deep) { if(from==to) return; // make list of sorted nodes // CHECK: if multiset stores equivalent nodes in the order in which they // are inserted, then this routine should be called 'stable_sort'. std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> > nodes; sibling_iterator it=from, it2=to; while(it != to) { nodes.insert(it.node); ++it; } // reassemble --it2; // prev and next are the nodes before and after the sorted range tree_node *prev=from.node->prev_sibling; tree_node *next=it2.node->next_sibling; typename std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> >::iterator nit=nodes.begin(), eit=nodes.end(); if(prev==0) { if((*nit)->parent!=0) // to catch "sorting the head" situations, when there is no parent (*nit)->parent->first_child=(*nit); } else prev->next_sibling=(*nit); --eit; while(nit!=eit) { (*nit)->prev_sibling=prev; if(prev) prev->next_sibling=(*nit); prev=(*nit); ++nit; } // prev now points to the last-but-one node in the sorted range if(prev) prev->next_sibling=(*eit); // eit points to the last node in the sorted range. (*eit)->next_sibling=next; (*eit)->prev_sibling=prev; // missed in the loop above if(next==0) { if((*eit)->parent!=0) // to catch "sorting the head" situations, when there is no parent (*eit)->parent->last_child=(*eit); } else next->prev_sibling=(*eit); if(deep) { // sort the children of each node too sibling_iterator bcs(*nodes.begin()); sibling_iterator ecs(*eit); ++ecs; while(bcs!=ecs) { sort(begin(bcs), end(bcs), comp, deep); ++bcs; } } }template <class T, class tree_node_allocator>template <typename iter>bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_) const { std::equal_to<T> comp; return equal(one_, two, three_, comp); }template <class T, class tree_node_allocator>template <typename iter>bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_) const { std::equal_to<T> comp; return equal_subtree(one_, two_, comp); }template <class T, class tree_node_allocator>template <typename iter, class BinaryPredicate>bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_, BinaryPredicate fun) const { pre_order_iterator one(one_), three(three_);// if(one==two && is_valid(three) && three.number_of_children()!=0)// return false; while(one!=two && is_valid(three)) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -