📄 rbfkalmandec.m
字号:
function [v, w, iter] = RBFKalmanDec(x, y, c, gamma, m, epsilon, P0, Q0, R0)
% Function [v, w, iter] = RBFKalmanDec(x, y, c, gamma, m, epsilon, P0, Q0, R0)
% Radial basis function training using linear generator functions
% and Decoupled Kalman filtering.
%
% INPUTS
% x = training inputs, an ni x M matrix, where
% ni is the dimension of each input, and
% M is the total number of training vectors.
% y = training outputs, an no x M matrix, where
% no is the dimension of each output, and
% M is the total number of training vectors.
% c = # of radial basis function centers.
% gamma = generator function parameter (typically between 0 and 1).
% m = generator function parameter (integer greater than one).
% epsilon = delta-error threshold at which to stop training.
% P0 = initial setting of estimate covariance matrix (about 40).
% Q0 = initial setting of state covariance matrix (about 40).
% R0 = initial setting of measurement covariance matrix (about 40).
%
% OUTPUTS
% v = prototypes at middle layer, an ni x c matrix.
% w = weight matrix between middle layer and output layer, an no x (c+1) matrix.
% iter = # of iterations it took to converge.
M = size(x, 2);
if M ~= size(y, 2)
disp('Inconsistent matrix sizes');
return;
end
ni = size(x, 1);
no = size(y, 1);
gamma2 = gamma * gamma;
w = zeros(no, c+1);
v = zeros(ni, c);
h = ones(c+1, M);
n = no * (c + 1) + ni * c; % total number of state variables
P = P0 * eye(n);
Q = Q0 * eye(n);
Qi = Q0 * eye(c + 1);
Qv = Q0 * eye(ni * c);
R = R0 * eye(no * M);
Ri = R0 * eye(M);
for i = 0 : c-1
v(:, i+1) = x(:, round(M*i/c) + 1);
end
% Put the RBF prototype parameters in a single vector.
vall = [];
for i = 1 : c
vall = [vall ; v(:, i)];
end
for j = 1 : c
for k = 1 : M
diff = norm(x(:, k) - v(:, j))^2;
if (diff + gamma2) < eps
h(j+1, k) = 0;
else
h(j+1, k) = (diff + gamma2) ^ (1 / (1 - m));
end
end
end
yhat = w * h;
E = sum(sum((y - yhat).^2)) / 2;
disp(['Initial E = ', num2str(E)]);
iter = 1;
NumPDoubles = 0;
while 1
Eold = E;
vold = v;
wold = w;
% Compute the partial derivative of the error with respect to
% the components of the prototypes in the v matrix.
vpartial = [];
for i = 1 : no
for k = 1 : M
vpartialcol = [];
for j = 1 : c
vpartialcol = [vpartialcol ; -w(i, j) / (1 - m) * ...
h(j+1, k)^m * 2 * (x(:, k) - v(:, j))];
end
vpartial = [vpartial vpartialcol];
end
end
% Compute the RBF error vector.
errorvector = [];
for i = 1 : no
for k = 1 : M
errorvector = [errorvector ; y(i, k) - yhat(i, k)];
end
end
for i = 1 : no
Pi = P((c+1)*(i-1)+1 : (c+1)*i, (c+1)*(i-1)+1 : (c+1)*i);
Ki = Pi * h * inv(Ri + h' * Pi * h);
ei = errorvector(M*(i-1)+1 : M*i);
w(i, :) = (w(i, :)' + Ki * ei)';
Pi = Pi - Ki * h' * Pi + Qi;
P((c+1)*(i-1)+1 : (c+1)*i, (c+1)*(i-1)+1 : (c+1)*i) = Pi;
end
Pv = P((c+1)*no+1 : n, (c+1)*no+1 : n);
Kv = Pv * vpartial * inv(R + vpartial' * Pv * vpartial);
vall = vall + Kv * errorvector;
Pv = Pv - Kv * vpartial' * Pv + Qv;
P((c+1)*no+1 : n, (c+1)*no+1 : n) = Pv;
for i = 1 : c
v(:, i) = vall(ni*(i-1)+1 : ni*i);
end
% Based on the new w and v matrices, compute the output
% of the RBF network.
for j = 1 : c
for k = 1 : M
diff = norm(x(:, k) - v(:, j))^2;
if (diff + gamma2) < eps
h(j+1, k) = 0;
else
h(j+1, k) = (diff + gamma2) ^ (1 / (1 - m));
end
end
end
yhat = w * h;
E = sum(sum((y - yhat).^2)) / 2;
de = (Eold - E) / Eold;
disp(['Iteration # ', num2str(iter), ', E = ', num2str(E), ...
', de = ', num2str(de)]);
if ((de >= 0) & (de <= epsilon)) | (E <= epsilon)
break;
elseif de < 0
v = vold;
w = wold;
P = 2 * P;
NumPDoubles = NumPDoubles + 1;
if NumPDoubles > 4
break;
end
end
iter = iter + 1;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -