📄 rbfgrad.m
字号:
function [v, w, iter] = RBFGrad(x, y, c, gamma, m, eta, epsilon)
% function [v, w, iter] = RBFGrad(x, y, c, gamma, m, eta, epsilon)
% Radial basis function training using linear generator functions
% and gradient descent.
%
% INPUTS
% x = training inputs, an ni x M matrix, where
% ni is the dimension of each input, and
% M is the total number of training vectors.
% y = training outputs, an no x M matrix, where
% no is the dimension of each output, and
% M is the total number of training vectors.
% c = # of radial basis function centers.
% gamma = generator function parameter (typically between 0 and 1).
% m = generator function parameter (integer greater than one).
% eta = gradient descent step size.
% epsilon = delta-error threshold at which to stop training.
%
% OUTPUTS
% v = prototypes at middle layer, an ni x c matrix.
% w = weight matrix between middle layer and output layer, an no x (c+1) matrix.
% iter = # of iterations it took to converge.
M = size(x, 2);
if M ~= size(y, 2)
disp('Inconsistent matrix sizes');
return;
end
ni = size(x, 1);
no = size(y, 1);
gamma2 = gamma * gamma;
w = zeros(no, c+1);
v = zeros(ni, c);
epsh = zeros(c+1, M);
h = ones(c+1, M);
for i = 0 : c-1
v(:, i+1) = x(:, round(M*i/c) + 1);
end
for j = 1 : c
for k = 1 : M
diff = norm(x(:, k) - v(:, j))^2;
if (diff + gamma2) < eps
h(j+1, k) = 0;
else
h(j+1, k) = (diff + gamma2) ^ (1 / (1 - m));
end
end
end
yhat = w * h;
E = sum(sum((y - yhat).^2)) / 2;
iter = 1;
NumEtaSplits = 0;
while 1
Eold = E;
epso = y - yhat;
wold = w;
for i = 1 : no
sumtemp = zeros(1, c+1);
for k = 1 : M
sumtemp = sumtemp + epso(i, k) * h(:, k)';
end
w(i, :) = w(i, :) + eta * sumtemp;
end
for k = 1 : M
for j = 1 : c
epsh(j, k) = 2 / (m - 1) * h(j+1, k)^m * epso(:, k)' * w(:, j+1);
end
end
vold = v;
for j = 1 : c
sumtemp = zeros(ni, 1);
for k = 1 : M
sumtemp = sumtemp + epsh(j, k) * (x(:, k) - v(:, j));
end
v(:, j) = v(:, j) + eta * sumtemp;
end
for j = 1 : c
for k = 1 : M
diff = norm(x(:, k) - v(:, j))^2;
if (diff + gamma2) < eps
h(j+1, k) = 0;
else
h(j+1, k) = (diff + gamma2) ^ (1 / (1 - m));
end
end
end
yhat = w * h;
E = sum(sum((y - yhat).^2)) / 2;
de = (Eold - E) / Eold;
disp(['Iteration # ', num2str(iter), ', E = ', num2str(E), ...
', de = ', num2str(de)]);
if ((de >= 0) & (de <= epsilon)) | (E <= epsilon)
break;
elseif de < 0
v = vold;
w = wold;
eta = eta / 2;
NumEtaSplits = NumEtaSplits + 1;
if NumEtaSplits > 4
break;
end
end
iter = iter + 1;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -