📄 i2c-algo-ite.c
字号:
timeout = wait_for_pin(adap, &status); if(timeout) { iic_stop(adap); printk("iic_readbytes: %s read timeout.\n", i2c_adap->name); return (-1); }#ifndef STUB_I2C if (status & ITE_I2CHSR_DB) { iic_stop(adap); printk("iic_readbytes: %s read error - no ack.\n", i2c_adap->name); return (-1); }#endif timeout = wait_for_fe(adap, &status); if(timeout) { iic_stop(adap); printk("iic_readbytes: %s FIFO is empty\n", i2c_adap->name); return (-1); } for(j=0; j<32/2; j++) { tmp.word = iic_inw(adap, ITE_I2CFDR); buf[rdcount++] = tmp.byte[1]; buf[rdcount++] = tmp.byte[0]; } /* status FIFO underrun */ iic_inw(adap, ITE_I2CFSR); } } if(remainder) { remainder=(remainder+1)/2 * 2; iic_outw(adap, ITE_I2CFBCR, remainder); if (sread) iic_outw(adap, ITE_I2CHCR, ITE_SREAD); else iic_outw(adap, ITE_I2CHCR, ITE_READ); /* Issue READ command */ timeout = wait_for_pin(adap, &status); if(timeout) { iic_stop(adap); printk("iic_readbytes: %s read timeout.\n", i2c_adap->name); return (-1); }#ifndef STUB_I2C if (status & ITE_I2CHSR_DB) { iic_stop(adap); printk("iic_readbytes: %s read error - no ack.\n", i2c_adap->name); return (-1); }#endif timeout = wait_for_fe(adap, &status); if(timeout) { iic_stop(adap); printk("iic_readbytes: %s FIFO is empty\n", i2c_adap->name); return (-1); } for(i=0; i<(remainder+1)/2; i++) { tmp.word = iic_inw(adap, ITE_I2CFDR); buf[rdcount++] = tmp.byte[1]; buf[rdcount++] = tmp.byte[0]; } /* status FIFO underrun */ iic_inw(adap, ITE_I2CFSR); } iic_stop(adap); return rdcount;}/* This function implements combined transactions. Combined * transactions consist of combinations of reading and writing blocks of data. * Each transfer (i.e. a read or a write) is separated by a repeated start * condition. */#if 0static int iic_combined_transaction(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], int num) { int i; struct i2c_msg *pmsg; int ret; DEB2(printk("Beginning combined transaction\n")); for(i=0; i<(num-1); i++) { pmsg = &msgs[i]; if(pmsg->flags & I2C_M_RD) { DEB2(printk(" This one is a read\n")); ret = iic_readbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_COMBINED_XFER); } else if(!(pmsg->flags & I2C_M_RD)) { DEB2(printk("This one is a write\n")); ret = iic_sendbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_COMBINED_XFER); } } /* Last read or write segment needs to be terminated with a stop */ pmsg = &msgs[i]; if(pmsg->flags & I2C_M_RD) { DEB2(printk("Doing the last read\n")); ret = iic_readbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_SINGLE_XFER); } else if(!(pmsg->flags & I2C_M_RD)) { DEB2(printk("Doing the last write\n")); ret = iic_sendbytes(i2c_adap, pmsg->buf, pmsg->len, IIC_SINGLE_XFER); } return ret;}#endif/* Whenever we initiate a transaction, the first byte clocked * onto the bus after the start condition is the address (7 bit) of the * device we want to talk to. This function manipulates the address specified * so that it makes sense to the hardware when written to the IIC peripheral. * * Note: 10 bit addresses are not supported in this driver, although they are * supported by the hardware. This functionality needs to be implemented. */static inline int iic_doAddress(struct i2c_algo_iic_data *adap, struct i2c_msg *msg, int retries) { unsigned short flags = msg->flags; unsigned int addr; int ret;/* Ten bit addresses not supported right now */ if ( (flags & I2C_M_TEN) ) { #if 0 addr = 0xf0 | (( msg->addr >> 7) & 0x03); DEB2(printk("addr0: %d\n",addr)); ret = try_address(adap, addr, retries); if (ret!=1) { printk("iic_doAddress: died at extended address code.\n"); return -EREMOTEIO; } iic_outw(adap,msg->addr & 0x7f); if (ret != 1) { printk("iic_doAddress: died at 2nd address code.\n"); return -EREMOTEIO; } if ( flags & I2C_M_RD ) { i2c_repstart(adap); addr |= 0x01; ret = try_address(adap, addr, retries); if (ret!=1) { printk("iic_doAddress: died at extended address code.\n"); return -EREMOTEIO; } }#endif } else { addr = ( msg->addr << 1 );#if 0 if (flags & I2C_M_RD ) addr |= 1; if (flags & I2C_M_REV_DIR_ADDR ) addr ^= 1;#endif if (iic_inw(adap, ITE_I2CSAR) != addr) { iic_outw(adap, ITE_I2CSAR, addr); ret = try_address(adap, addr, retries); if (ret!=1) { printk("iic_doAddress: died at address code.\n"); return -EREMOTEIO; } } } return 0;}/* Description: Prepares the controller for a transaction (clearing status * registers, data buffers, etc), and then calls either iic_readbytes or * iic_sendbytes to do the actual transaction. * * still to be done: Before we issue a transaction, we should * verify that the bus is not busy or in some unknown state. */static int iic_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], int num){ struct i2c_algo_iic_data *adap = i2c_adap->algo_data; struct i2c_msg *pmsg; int i = 0; int ret, timeout; pmsg = &msgs[i]; if(!pmsg->len) { DEB2(printk("iic_xfer: read/write length is 0\n");) return -EIO; } if(!(pmsg->flags & I2C_M_RD) && (!(pmsg->len)%2) ) { DEB2(printk("iic_xfer: write buffer length is not odd\n");) return -EIO; } /* Wait for any pending transfers to complete */ timeout = wait_for_bb(adap); if (timeout) { DEB2(printk("iic_xfer: Timeout waiting for host not busy\n");) return -EIO; } /* Flush FIFO */ iic_outw(adap, ITE_I2CFCR, ITE_I2CFCR_FLUSH); /* Load address */ ret = iic_doAddress(adap, pmsg, i2c_adap->retries); if (ret) return -EIO;#if 0 /* Combined transaction (read and write) */ if(num > 1) { DEB2(printk("iic_xfer: Call combined transaction\n")); ret = iic_combined_transaction(i2c_adap, msgs, num); }#endif DEB3(printk("iic_xfer: Msg %d, addr=0x%x, flags=0x%x, len=%d\n", i, msgs[i].addr, msgs[i].flags, msgs[i].len);) if(pmsg->flags & I2C_M_RD) /* Read */ ret = iic_readbytes(i2c_adap, pmsg->buf, pmsg->len, 0); else { /* Write */ udelay(1000); ret = iic_sendbytes(i2c_adap, pmsg->buf, pmsg->len); } if (ret != pmsg->len) DEB3(printk("iic_xfer: error or fail on read/write %d bytes.\n",ret)); else DEB3(printk("iic_xfer: read/write %d bytes.\n",ret)); return ret;}/* Implements device specific ioctls. Higher level ioctls can * be found in i2c-core.c and are typical of any i2c controller (specifying * slave address, timeouts, etc). These ioctls take advantage of any hardware * features built into the controller for which this algorithm-adapter set * was written. These ioctls allow you to take control of the data and clock * lines and set the either high or low, * similar to a GPIO pin. */static int algo_control(struct i2c_adapter *adapter, unsigned int cmd, unsigned long arg){ struct i2c_algo_iic_data *adap = adapter->algo_data; struct i2c_iic_msg s_msg; char *buf; int ret; if (cmd == I2C_SREAD) { if(copy_from_user(&s_msg, (struct i2c_iic_msg *)arg, sizeof(struct i2c_iic_msg))) return -EFAULT; buf = kmalloc(s_msg.len, GFP_KERNEL); if (buf== NULL) return -ENOMEM; /* Flush FIFO */ iic_outw(adap, ITE_I2CFCR, ITE_I2CFCR_FLUSH); /* Load address */ iic_outw(adap, ITE_I2CSAR,s_msg.addr<<1); iic_outw(adap, ITE_I2CSSAR,s_msg.waddr & 0xff); ret = iic_readbytes(adapter, buf, s_msg.len, 1); if (ret>=0) { if(copy_to_user( s_msg.buf, buf, s_msg.len) ) ret = -EFAULT; } kfree(buf); } return 0;}static u32 iic_func(struct i2c_adapter *adap){ return I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING; }/* -----exported algorithm data: ------------------------------------- */static struct i2c_algorithm iic_algo = { "ITE IIC algorithm", I2C_ALGO_IIC, iic_xfer, /* master_xfer */ NULL, /* smbus_xfer */ NULL, /* slave_xmit */ NULL, /* slave_recv */ algo_control, /* ioctl */ iic_func, /* functionality */};/* * registering functions to load algorithms at runtime */int i2c_iic_add_bus(struct i2c_adapter *adap){ int i; short status; struct i2c_algo_iic_data *iic_adap = adap->algo_data; if (iic_test) { int ret = test_bus(iic_adap, adap->name); if (ret<0) return -ENODEV; } DEB2(printk("i2c-algo-ite: hw routines for %s registered.\n", adap->name)); /* register new adapter to i2c module... */ adap->id |= iic_algo.id; adap->algo = &iic_algo; adap->timeout = 100; /* default values, should */ adap->retries = 3; /* be replaced by defines */ adap->flags = 0;#ifdef MODULE MOD_INC_USE_COUNT;#endif i2c_add_adapter(adap); iic_init(iic_adap); /* scan bus */ /* By default scanning the bus is turned off. */ if (iic_scan) { printk(KERN_INFO " i2c-algo-ite: scanning bus %s.\n", adap->name); for (i = 0x00; i < 0xff; i+=2) { iic_outw(iic_adap, ITE_I2CSAR, i); iic_start(iic_adap); if ( (wait_for_pin(iic_adap, &status) == 0) && ((status & ITE_I2CHSR_DNE) == 0) ) { printk(KERN_INFO "\n(%02x)\n",i>>1); } else { printk(KERN_INFO "."); iic_reset(iic_adap); } udelay(iic_adap->udelay); } } return 0;}int i2c_iic_del_bus(struct i2c_adapter *adap){ int res; if ((res = i2c_del_adapter(adap)) < 0) return res; DEB2(printk("i2c-algo-ite: adapter unregistered: %s\n",adap->name));#ifdef MODULE MOD_DEC_USE_COUNT;#endif return 0;}int __init i2c_algo_iic_init (void){ printk(KERN_INFO "ITE iic (i2c) algorithm module\n"); return 0;}void i2c_algo_iic_exit(void){ return;}EXPORT_SYMBOL(i2c_iic_add_bus);EXPORT_SYMBOL(i2c_iic_del_bus);/* The MODULE_* macros resolve to nothing if MODULES is not defined * when this file is compiled. */MODULE_AUTHOR("MontaVista Software <www.mvista.com>");MODULE_DESCRIPTION("ITE iic algorithm");MODULE_LICENSE("GPL");MODULE_PARM(iic_test, "i");MODULE_PARM(iic_scan, "i");MODULE_PARM(i2c_debug,"i");MODULE_PARM_DESC(iic_test, "Test if the I2C bus is available");MODULE_PARM_DESC(iic_scan, "Scan for active chips on the bus");MODULE_PARM_DESC(i2c_debug, "debug level - 0 off; 1 normal; 2,3 more verbose; 9 iic-protocol");/* This function resolves to init_module (the function invoked when a module * is loaded via insmod) when this file is compiled with MODULES defined. * Otherwise (i.e. if you want this driver statically linked to the kernel), * a pointer to this function is stored in a table and called * during the intialization of the kernel (in do_basic_setup in /init/main.c) * * All this functionality is complements of the macros defined in linux/init.h */module_init(i2c_algo_iic_init);/* If MODULES is defined when this file is compiled, then this function will * resolved to cleanup_module. */module_exit(i2c_algo_iic_exit);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -