⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_atan2.c

📁 glibc 库, 不仅可以学习使用库函数,还可以学习函数的具体实现,是提高功力的好资料
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//************************************************************************//*  MODULE_NAME: atnat2.c                                               *//*                                                                      *//*  FUNCTIONS: uatan2                                                   *//*             atan2Mp                                                  *//*             signArctan2                                              *//*             normalized                                               *//*                                                                      *//*  FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h                *//*                mpatan.c mpatan2.c mpsqrt.c                           *//*                uatan.tbl                                             *//*                                                                      *//* An ultimate atan2() routine. Given two IEEE double machine numbers y,*//* x it computes the correctly rounded (to nearest) value of atan2(y,x).*//*                                                                      *//* Assumption: Machine arithmetic operations are performed in           *//* round to nearest mode of IEEE 754 standard.                          *//*                                                                      *//************************************************************************/#include "dla.h"#include "mpa.h"#include "MathLib.h"#include "uatan.tbl"#include "atnat2.h"#include "math_private.h"/************************************************************************//* An ultimate atan2 routine. Given two IEEE double machine numbers y,x *//* it computes the correctly rounded (to nearest) value of atan2(y,x).  *//* Assumption: Machine arithmetic operations are performed in           *//* round to nearest mode of IEEE 754 standard.                          *//************************************************************************/static double atan2Mp(double ,double ,const int[]);static double signArctan2(double ,double);static double normalized(double ,double,double ,double);void __mpatan2(mp_no *,mp_no *,mp_no *,int);double __ieee754_atan2(double y,double x) {  int i,de,ux,dx,uy,dy;#if 0  int p;#endif  static const int pr[MM]={6,8,10,20,32};  double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8,         z,zz,cor,s1,ss1,s2,ss2;#if 0  double z1,z2;#endif  number num;#if 0  mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2;#endif  static const int ep= 59768832,   /*  57*16**5   */                   em=-59768832;   /* -57*16**5   */  /* x=NaN or y=NaN */  num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];  if   ((ux&0x7ff00000)    ==0x7ff00000) {    if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; }  num.d = y;  uy = num.i[HIGH_HALF];  dy = num.i[LOW_HALF];  if   ((uy&0x7ff00000)    ==0x7ff00000) {    if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; }  /* y=+-0 */  if      (uy==0x00000000) {    if    (dy==0x00000000) {      if  ((ux&0x80000000)==0x00000000)  return ZERO;      else                               return opi.d; } }  else if (uy==0x80000000) {    if    (dy==0x00000000) {      if  ((ux&0x80000000)==0x00000000)  return MZERO;      else                               return mopi.d;} }  /* x=+-0 */  if (x==ZERO) {    if ((uy&0x80000000)==0x00000000)     return hpi.d;    else                                 return mhpi.d; }  /* x=+-INF */  if          (ux==0x7ff00000) {    if        (dx==0x00000000) {      if      (uy==0x7ff00000) {        if    (dy==0x00000000)  return qpi.d; }      else if (uy==0xfff00000) {        if    (dy==0x00000000)  return mqpi.d; }      else {        if    ((uy&0x80000000)==0x00000000)  return ZERO;        else                                 return MZERO; }    }  }  else if     (ux==0xfff00000) {    if        (dx==0x00000000) {      if      (uy==0x7ff00000) {        if    (dy==0x00000000)  return tqpi.d; }      else if (uy==0xfff00000) {        if    (dy==0x00000000)  return mtqpi.d; }      else                     {        if    ((uy&0x80000000)==0x00000000)  return opi.d;        else                                 return mopi.d; }    }  }  /* y=+-INF */  if      (uy==0x7ff00000) {    if    (dy==0x00000000)  return hpi.d; }  else if (uy==0xfff00000) {    if    (dy==0x00000000)  return mhpi.d; }  /* either x/y or y/x is very close to zero */  ax = (x<ZERO) ? -x : x;    ay = (y<ZERO) ? -y : y;  de = (uy & 0x7ff00000) - (ux & 0x7ff00000);  if      (de>=ep)  { return ((y>ZERO) ? hpi.d : mhpi.d); }  else if (de<=em)  {    if    (x>ZERO)  {      if  ((z=ay/ax)<TWOM1022)  return normalized(ax,ay,y,z);      else                      return signArctan2(y,z); }    else            { return ((y>ZERO) ? opi.d : mopi.d); } }  /* if either x or y is extremely close to zero, scale abs(x), abs(y). */  if (ax<twom500.d || ay<twom500.d) { ax*=two500.d;  ay*=two500.d; }  /* x,y which are neither special nor extreme */  if (ay<ax) {    u=ay/ax;    EMULV(ax,u,v,vv,t1,t2,t3,t4,t5)    du=((ay-v)-vv)/ax; }  else {    u=ax/ay;    EMULV(ay,u,v,vv,t1,t2,t3,t4,t5)    du=((ax-v)-vv)/ay; }  if (x>ZERO) {    /* (i)   x>0, abs(y)< abs(x):  atan(ay/ax) */    if (ay<ax) {      if (u<inv16.d) {        v=u*u;  zz=du+u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));        if ((z=u+(zz-u1.d*u)) == u+(zz+u1.d*u))  return signArctan2(y,z);        MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(u,du,s2,ss2,s1,ss1,t1,t2)        if ((z=s1+(ss1-u5.d*s1)) == s1+(ss1+u5.d*s1))  return signArctan2(y,z);        return atan2Mp(x,y,pr);      }      else {        i=(TWO52+TWO8*u)-TWO52;  i-=16;        t3=u-cij[i][0].d;        EADD(t3,du,v,dv)        t1=cij[i][1].d;  t2=cij[i][2].d;        zz=v*t2+(dv*t2+v*v*(cij[i][3].d+v*(cij[i][4].d+                         v*(cij[i][5].d+v* cij[i][6].d))));        if (i<112) {          if (i<48)  u9=u91.d;    /* u < 1/4        */          else       u9=u92.d; }  /* 1/4 <= u < 1/2 */        else {          if (i<176) u9=u93.d;    /* 1/2 <= u < 3/4 */          else       u9=u94.d; }  /* 3/4 <= u <= 1  */        if ((z=t1+(zz-u9*t1)) == t1+(zz+u9*t1))  return signArctan2(y,z);        t1=u-hij[i][0].d;        EADD(t1,du,v,vv)        s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+           v*(hij[i][14].d+v* hij[i][15].d))));        ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -