⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_atan.c

📁 glibc 库, 不仅可以学习使用库函数,还可以学习函数的具体实现,是提高功力的好资料
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//************************************************************************//*  MODULE_NAME: atnat.c                                                *//*                                                                      *//*  FUNCTIONS:  uatan                                                   *//*              atanMp                                                  *//*              signArctan                                              *//*                                                                      *//*                                                                      *//*  FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h                 *//*                mpatan.c mpatan2.c mpsqrt.c                           *//*                uatan.tbl                                             *//*                                                                      *//* An ultimate atan() routine. Given an IEEE double machine number x    *//* it computes the correctly rounded (to nearest) value of atan(x).     *//*                                                                      *//* Assumption: Machine arithmetic operations are performed in           *//* round to nearest mode of IEEE 754 standard.                          *//*                                                                      *//************************************************************************/#include "dla.h"#include "mpa.h"#include "MathLib.h"#include "uatan.tbl"#include "atnat.h"#include "math.h"void __mpatan(mp_no *,mp_no *,int);          /* see definition in mpatan.c */static double atanMp(double,const int[]);double __signArctan(double,double);/* An ultimate atan() routine. Given an IEEE double machine number x,    *//* routine computes the correctly rounded (to nearest) value of atan(x). */double atan(double x) {  double cor,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,u,u2,u3,         v,vv,w,ww,y,yy,z,zz;#if 0  double y1,y2;#endif  int i,ux,dx;#if 0  int p;#endif  static const int pr[M]={6,8,10,32};  number num;#if 0  mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;#endif  num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];  /* x=NaN */  if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000))    return x+x;  /* Regular values of x, including denormals +-0 and +-INF */  u = (x<ZERO) ? -x : x;  if (u<C) {    if (u<B) {      if (u<A) {                                           /* u < A */         return x; }      else {                                               /* A <= u < B */        v=x*x;  yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));        if ((y=x+(yy-U1*x)) == x+(yy+U1*x))  return y;        EMULV(x,x,v,vv,t1,t2,t3,t4,t5)                       /* v+vv=x^2 */        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2)        if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1))  return y;        return atanMp(x,pr);      } }    else {  /* B <= u < C */      i=(TWO52+TWO8*u)-TWO52;  i-=16;      z=u-cij[i][0].d;      yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+                        z*(cij[i][5].d+z* cij[i][6].d))));      t1=cij[i][1].d;      if (i<112) {        if (i<48)  u2=U21;    /* u < 1/4        */        else       u2=U22; }  /* 1/4 <= u < 1/2 */      else {        if (i<176) u2=U23;    /* 1/2 <= u < 3/4 */        else       u2=U24; }  /* 3/4 <= u <= 1  */      if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1))  return __signArctan(x,y);      z=u-hij[i][0].d;      s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+         z*(hij[i][14].d+z* hij[i][15].d))));      ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)      MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)      MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)      MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)      MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)      if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2))  return __signArctan(x,y);      return atanMp(x,pr);    }  }  else {    if (u<D) { /* C <= u < D */      w=ONE/u;      EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)      ww=w*((ONE-t1)-t2);      i=(TWO52+TWO8*w)-TWO52;  i-=16;      z=(w-cij[i][0].d)+ww;      yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+                             z*(cij[i][5].d+z* cij[i][6].d))));      t1=HPI-cij[i][1].d;      if (i<112)  u3=U31;  /* w <  1/2 */      else        u3=U32;  /* w >= 1/2 */      if ((y=t1+(yy-u3)) == t1+(yy+u3))  return __signArctan(x,y);      DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)      t1=w-hij[i][0].d;      EADD(t1,ww,z,zz)      s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+         z*(hij[i][14].d+z* hij[i][15].d))));      ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)      MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)      MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)      MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)      MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)      ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)      SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2)      if ((y=s1+(ss1-U7)) == s1+(ss1+U7))  return __signArctan(x,y);    return atanMp(x,pr);    }    else {      if (u<E) { /* D <= u < E */        w=ONE/u;   v=w*w;        EMULV(w,u,t1,t2,t3,t4,t5,t6,t7)        yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));        ww=w*((ONE-t1)-t2);        ESUB(HPI,w,t3,cor)        yy=((HPI1+cor)-ww)-yy;        if ((y=t3+(yy-U4)) == t3+(yy+U4))  return __signArctan(x,y);        DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10)        MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)        MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)        ADD2(w,ww,s2,ss2,s1,ss1,t1,t2)        SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2)        if ((y=s2+(ss2-U8)) == s2+(ss2+U8))  return __signArctan(x,y);      return atanMp(x,pr);      }      else {        /* u >= E */        if (x>0) return  HPI;        else     return MHPI; }    }  }}  /* Fix the sign of y and return */double  __signArctan(double x,double y){    if (x<ZERO) return -y;    else        return  y;} /* Final stages. Compute atan(x) by multiple precision arithmetic */static double atanMp(double x,const int pr[]){  mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1;  double y1,y2;  int i,p;for (i=0; i<M; i++) {    p = pr[i];    __dbl_mp(x,&mpx,p);          __mpatan(&mpx,&mpy,p);    __dbl_mp(u9[i].d,&mpt1,p);   __mul(&mpy,&mpt1,&mperr,p);    __add(&mpy,&mperr,&mpy1,p);  __sub(&mpy,&mperr,&mpy2,p);    __mp_dbl(&mpy1,&y1,p);       __mp_dbl(&mpy2,&y2,p);    if (y1==y2)   return y1;  }  return y1; /*if unpossible to do exact computing */}#ifdef NO_LONG_DOUBLEweak_alias (atan, atanl)#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -