📄 s_atan.c
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//************************************************************************//* MODULE_NAME: atnat.c *//* *//* FUNCTIONS: uatan *//* atanMp *//* signArctan *//* *//* *//* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h *//* mpatan.c mpatan2.c mpsqrt.c *//* uatan.tbl *//* *//* An ultimate atan() routine. Given an IEEE double machine number x *//* it computes the correctly rounded (to nearest) value of atan(x). *//* *//* Assumption: Machine arithmetic operations are performed in *//* round to nearest mode of IEEE 754 standard. *//* *//************************************************************************/#include "dla.h"#include "mpa.h"#include "MathLib.h"#include "uatan.tbl"#include "atnat.h"#include "math.h"void __mpatan(mp_no *,mp_no *,int); /* see definition in mpatan.c */static double atanMp(double,const int[]);double __signArctan(double,double);/* An ultimate atan() routine. Given an IEEE double machine number x, *//* routine computes the correctly rounded (to nearest) value of atan(x). */double atan(double x) { double cor,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,u,u2,u3, v,vv,w,ww,y,yy,z,zz;#if 0 double y1,y2;#endif int i,ux,dx;#if 0 int p;#endif static const int pr[M]={6,8,10,32}; number num;#if 0 mp_no mpt1,mpx,mpy,mpy1,mpy2,mperr;#endif num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; /* x=NaN */ if (((ux&0x7ff00000)==0x7ff00000) && (((ux&0x000fffff)|dx)!=0x00000000)) return x+x; /* Regular values of x, including denormals +-0 and +-INF */ u = (x<ZERO) ? -x : x; if (u<C) { if (u<B) { if (u<A) { /* u < A */ return x; } else { /* A <= u < B */ v=x*x; yy=x*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); if ((y=x+(yy-U1*x)) == x+(yy+U1*x)) return y; EMULV(x,x,v,vv,t1,t2,t3,t4,t5) /* v+vv=x^2 */ s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(x,ZERO,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(x,ZERO,s2,ss2,s1,ss1,t1,t2) if ((y=s1+(ss1-U5*s1)) == s1+(ss1+U5*s1)) return y; return atanMp(x,pr); } } else { /* B <= u < C */ i=(TWO52+TWO8*u)-TWO52; i-=16; z=u-cij[i][0].d; yy=z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+ z*(cij[i][5].d+z* cij[i][6].d)))); t1=cij[i][1].d; if (i<112) { if (i<48) u2=U21; /* u < 1/4 */ else u2=U22; } /* 1/4 <= u < 1/2 */ else { if (i<176) u2=U23; /* 1/2 <= u < 3/4 */ else u2=U24; } /* 3/4 <= u <= 1 */ if ((y=t1+(yy-u2*t1)) == t1+(yy+u2*t1)) return __signArctan(x,y); z=u-hij[i][0].d; s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+ z*(hij[i][14].d+z* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,ZERO,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) if ((y=s2+(ss2-U6*s2)) == s2+(ss2+U6*s2)) return __signArctan(x,y); return atanMp(x,pr); } } else { if (u<D) { /* C <= u < D */ w=ONE/u; EMULV(w,u,t1,t2,t3,t4,t5,t6,t7) ww=w*((ONE-t1)-t2); i=(TWO52+TWO8*w)-TWO52; i-=16; z=(w-cij[i][0].d)+ww; yy=HPI1-z*(cij[i][2].d+z*(cij[i][3].d+z*(cij[i][4].d+ z*(cij[i][5].d+z* cij[i][6].d)))); t1=HPI-cij[i][1].d; if (i<112) u3=U31; /* w < 1/2 */ else u3=U32; /* w >= 1/2 */ if ((y=t1+(yy-u3)) == t1+(yy+u3)) return __signArctan(x,y); DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) t1=w-hij[i][0].d; EADD(t1,ww,z,zz) s1=z*(hij[i][11].d+z*(hij[i][12].d+z*(hij[i][13].d+ z*(hij[i][14].d+z* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(z,zz,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) SUB2(HPI,HPI1,s2,ss2,s1,ss1,t1,t2) if ((y=s1+(ss1-U7)) == s1+(ss1+U7)) return __signArctan(x,y); return atanMp(x,pr); } else { if (u<E) { /* D <= u < E */ w=ONE/u; v=w*w; EMULV(w,u,t1,t2,t3,t4,t5,t6,t7) yy=w*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); ww=w*((ONE-t1)-t2); ESUB(HPI,w,t3,cor) yy=((HPI1+cor)-ww)-yy; if ((y=t3+(yy-U4)) == t3+(yy+U4)) return __signArctan(x,y); DIV2(ONE,ZERO,u,ZERO,w,ww,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) MUL2(w,ww,w,ww,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(w,ww,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(w,ww,s2,ss2,s1,ss1,t1,t2) SUB2(HPI,HPI1,s1,ss1,s2,ss2,t1,t2) if ((y=s2+(ss2-U8)) == s2+(ss2+U8)) return __signArctan(x,y); return atanMp(x,pr); } else { /* u >= E */ if (x>0) return HPI; else return MHPI; } } }} /* Fix the sign of y and return */double __signArctan(double x,double y){ if (x<ZERO) return -y; else return y;} /* Final stages. Compute atan(x) by multiple precision arithmetic */static double atanMp(double x,const int pr[]){ mp_no mpx,mpy,mpy2,mperr,mpt1,mpy1; double y1,y2; int i,p;for (i=0; i<M; i++) { p = pr[i]; __dbl_mp(x,&mpx,p); __mpatan(&mpx,&mpy,p); __dbl_mp(u9[i].d,&mpt1,p); __mul(&mpy,&mpt1,&mperr,p); __add(&mpy,&mperr,&mpy1,p); __sub(&mpy,&mperr,&mpy2,p); __mp_dbl(&mpy1,&y1,p); __mp_dbl(&mpy2,&y2,p); if (y1==y2) return y1; } return y1; /*if unpossible to do exact computing */}#ifdef NO_LONG_DOUBLEweak_alias (atan, atanl)#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -