⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_powl.c

📁 glibc 库, 不仅可以学习使用库函数,还可以学习函数的具体实现,是提高功力的好资料
💻 C
字号:
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* Expansions and modifications for 128-bit long double are   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>   and are incorporated herein by permission of the author.  The author    reserves the right to distribute this material elsewhere under different   copying permissions.  These modifications are distributed here under    the following terms:    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA *//* __ieee754_powl(x,y) return x**y * *		      n * Method:  Let x =  2   * (1+f) *	1. Compute and return log2(x) in two pieces: *		log2(x) = w1 + w2, *	   where w1 has 113-53 = 60 bit trailing zeros. *	2. Perform y*log2(x) = n+y' by simulating muti-precision *	   arithmetic, where |y'|<=0.5. *	3. Return x**y = 2**n*exp(y'*log2) * * Special cases: *	1.  (anything) ** 0  is 1 *	2.  (anything) ** 1  is itself *	3.  (anything) ** NAN is NAN *	4.  NAN ** (anything except 0) is NAN *	5.  +-(|x| > 1) **  +INF is +INF *	6.  +-(|x| > 1) **  -INF is +0 *	7.  +-(|x| < 1) **  +INF is +0 *	8.  +-(|x| < 1) **  -INF is +INF *	9.  +-1         ** +-INF is NAN *	10. +0 ** (+anything except 0, NAN)               is +0 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0 *	12. +0 ** (-anything except 0, NAN)               is +INF *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF *	14. -0 ** (odd integer) = -( +0 ** (odd integer) ) *	15. +INF ** (+anything except 0,NAN) is +INF *	16. +INF ** (-anything except 0,NAN) is +0 *	17. -INF ** (anything)  = -0 ** (-anything) *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) *	19. (-anything except 0 and inf) ** (non-integer) is NAN * */#include "math.h"#include "math_private.h"static const long double bp[] = {  1.0L,  1.5L,};/* log_2(1.5) */static const long double dp_h[] = {  0.0,  5.8496250072115607565592654282227158546448E-1L};/* Low part of log_2(1.5) */static const long double dp_l[] = {  0.0,  1.0579781240112554492329533686862998106046E-16L};static const long double zero = 0.0L,  one = 1.0L,  two = 2.0L,  two113 = 1.0384593717069655257060992658440192E34L,  huge = 1.0e3000L,  tiny = 1.0e-3000L;/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))   z = (x-1)/(x+1)   1 <= x <= 1.25   Peak relative error 2.3e-37 */static const long double LN[] ={ -3.0779177200290054398792536829702930623200E1L,  6.5135778082209159921251824580292116201640E1L, -4.6312921812152436921591152809994014413540E1L,  1.2510208195629420304615674658258363295208E1L, -9.9266909031921425609179910128531667336670E-1L};static const long double LD[] ={ -5.129862866715009066465422805058933131960E1L,  1.452015077564081884387441590064272782044E2L, -1.524043275549860505277434040464085593165E2L,  7.236063513651544224319663428634139768808E1L, -1.494198912340228235853027849917095580053E1L  /* 1.0E0 */};/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))   0 <= x <= 0.5   Peak relative error 5.7e-38  */static const long double PN[] ={  5.081801691915377692446852383385968225675E8L,  9.360895299872484512023336636427675327355E6L,  4.213701282274196030811629773097579432957E4L,  5.201006511142748908655720086041570288182E1L,  9.088368420359444263703202925095675982530E-3L,};static const long double PD[] ={  3.049081015149226615468111430031590411682E9L,  1.069833887183886839966085436512368982758E8L,  8.259257717868875207333991924545445705394E5L,  1.872583833284143212651746812884298360922E3L,  /* 1.0E0 */};static const long double  /* ln 2 */  lg2 = 6.9314718055994530941723212145817656807550E-1L,  lg2_h = 6.9314718055994528622676398299518041312695E-1L,  lg2_l = 2.3190468138462996154948554638754786504121E-17L,  ovt = 8.0085662595372944372e-0017L,  /* 2/(3*log(2)) */  cp = 9.6179669392597560490661645400126142495110E-1L,  cp_h = 9.6179669392597555432899980587535537779331E-1L,  cp_l = 5.0577616648125906047157785230014751039424E-17L;#ifdef __STDC__long double__ieee754_powl (long double x, long double y)#elselong double__ieee754_powl (x, y)     long double x, y;#endif{  long double z, ax, z_h, z_l, p_h, p_l;  long double y1, t1, t2, r, s, t, u, v, w;  long double s2, s_h, s_l, t_h, t_l;  int32_t i, j, k, yisint, n;  u_int32_t ix, iy;  int32_t hx, hy;  ieee854_long_double_shape_type o, p, q;  p.value = x;  hx = p.parts32.w0;  ix = hx & 0x7fffffff;  q.value = y;  hy = q.parts32.w0;  iy = hy & 0x7fffffff;  /* y==zero: x**0 = 1 */  if ((iy | q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)    return one;  /* 1.0**y = 1; -1.0**+-Inf = 1 */  if (x == one)    return one;  if (x == -1.0L && iy == 0x7fff0000      && (q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)    return one;  /* +-NaN return x+y */  if ((ix > 0x7fff0000)      || ((ix == 0x7fff0000)	  && ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) != 0))      || (iy > 0x7fff0000)      || ((iy == 0x7fff0000)	  && ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) != 0)))    return x + y;  /* determine if y is an odd int when x < 0   * yisint = 0       ... y is not an integer   * yisint = 1       ... y is an odd int   * yisint = 2       ... y is an even int   */  yisint = 0;  if (hx < 0)    {      if (iy >= 0x40700000)	/* 2^113 */	yisint = 2;		/* even integer y */      else if (iy >= 0x3fff0000)	/* 1.0 */	{	  if (__floorl (y) == y)	    {	      z = 0.5 * y;	      if (__floorl (z) == z)		yisint = 2;	      else		yisint = 1;	    }	}    }  /* special value of y */  if ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)    {      if (iy == 0x7fff0000)	/* y is +-inf */	{	  if (((ix - 0x3fff0000) | p.parts32.w1 | p.parts32.w2 | p.parts32.w3)	      == 0)	    return y - y;	/* +-1**inf is NaN */	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */	    return (hy >= 0) ? y : zero;	  else			/* (|x|<1)**-,+inf = inf,0 */	    return (hy < 0) ? -y : zero;	}      if (iy == 0x3fff0000)	{			/* y is  +-1 */	  if (hy < 0)	    return one / x;	  else	    return x;	}      if (hy == 0x40000000)	return x * x;		/* y is  2 */      if (hy == 0x3ffe0000)	{			/* y is  0.5 */	  if (hx >= 0)		/* x >= +0 */	    return __ieee754_sqrtl (x);	}    }  ax = fabsl (x);  /* special value of x */  if ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) == 0)    {      if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)	{	  z = ax;		/*x is +-0,+-inf,+-1 */	  if (hy < 0)	    z = one / z;	/* z = (1/|x|) */	  if (hx < 0)	    {	      if (((ix - 0x3fff0000) | yisint) == 0)		{		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */		}	      else if (yisint == 1)		z = -z;		/* (x<0)**odd = -(|x|**odd) */	    }	  return z;	}    }  /* (x<0)**(non-int) is NaN */  if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)    return (x - x) / (x - x);  /* |y| is huge.     2^-16495 = 1/2 of smallest representable value.     If (1 - 1/131072)^y underflows, y > 1.4986e9 */  if (iy > 0x401d654b)    {      /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */      if (iy > 0x407d654b)	{	  if (ix <= 0x3ffeffff)	    return (hy < 0) ? huge * huge : tiny * tiny;	  if (ix >= 0x3fff0000)	    return (hy > 0) ? huge * huge : tiny * tiny;	}      /* over/underflow if x is not close to one */      if (ix < 0x3ffeffff)	return (hy < 0) ? huge * huge : tiny * tiny;      if (ix > 0x3fff0000)	return (hy > 0) ? huge * huge : tiny * tiny;    }  n = 0;  /* take care subnormal number */  if (ix < 0x00010000)    {      ax *= two113;      n -= 113;      o.value = ax;      ix = o.parts32.w0;    }  n += ((ix) >> 16) - 0x3fff;  j = ix & 0x0000ffff;  /* determine interval */  ix = j | 0x3fff0000;		/* normalize ix */  if (j <= 0x3988)    k = 0;			/* |x|<sqrt(3/2) */  else if (j < 0xbb67)    k = 1;			/* |x|<sqrt(3)   */  else    {      k = 0;      n += 1;      ix -= 0x00010000;    }  o.value = ax;  o.parts32.w0 = ix;  ax = o.value;  /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */  u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */  v = one / (ax + bp[k]);  s = u * v;  s_h = s;  o.value = s_h;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  s_h = o.value;  /* t_h=ax+bp[k] High */  t_h = ax + bp[k];  o.value = t_h;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  t_h = o.value;  t_l = ax - (t_h - bp[k]);  s_l = v * ((u - s_h * t_h) - s_h * t_l);  /* compute log(ax) */  s2 = s * s;  u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));  v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));  r = s2 * s2 * u / v;  r += s_l * (s_h + s);  s2 = s_h * s_h;  t_h = 3.0 + s2 + r;  o.value = t_h;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  t_h = o.value;  t_l = r - ((t_h - 3.0) - s2);  /* u+v = s*(1+...) */  u = s_h * t_h;  v = s_l * t_h + t_l * s;  /* 2/(3log2)*(s+...) */  p_h = u + v;  o.value = p_h;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  p_h = o.value;  p_l = v - (p_h - u);  z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */  z_l = cp_l * p_h + p_l * cp + dp_l[k];  /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */  t = (long double) n;  t1 = (((z_h + z_l) + dp_h[k]) + t);  o.value = t1;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  t1 = o.value;  t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);  /* s (sign of result -ve**odd) = -1 else = 1 */  s = one;  if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)    s = -one;			/* (-ve)**(odd int) */  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */  y1 = y;  o.value = y1;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  y1 = o.value;  p_l = (y - y1) * t1 + y * t2;  p_h = y1 * t1;  z = p_l + p_h;  o.value = z;  j = o.parts32.w0;  if (j >= 0x400d0000) /* z >= 16384 */    {      /* if z > 16384 */      if (((j - 0x400d0000) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) != 0)	return s * huge * huge;	/* overflow */      else	{	  if (p_l + ovt > z - p_h)	    return s * huge * huge;	/* overflow */	}    }  else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */    {      /* z < -16495 */      if (((j - 0xc00d01bc) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3)	  != 0)	return s * tiny * tiny;	/* underflow */      else	{	  if (p_l <= z - p_h)	    return s * tiny * tiny;	/* underflow */	}    }  /* compute 2**(p_h+p_l) */  i = j & 0x7fffffff;  k = (i >> 16) - 0x3fff;  n = 0;  if (i > 0x3ffe0000)    {				/* if |z| > 0.5, set n = [z+0.5] */      n = __floorl (z + 0.5L);      t = n;      p_h -= t;    }  t = p_l + p_h;  o.value = t;  o.parts32.w3 = 0;  o.parts32.w2 &= 0xf8000000;  t = o.value;  u = t * lg2_h;  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;  z = u + v;  w = v - (z - u);  /*  exp(z) */  t = z * z;  u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));  v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));  t1 = z - t * u / v;  r = (z * t1) / (t1 - two) - (w + z * w);  z = one - (r - z);  o.value = z;  j = o.parts32.w0;  j += (n << 16);  if ((j >> 16) <= 0)    z = __scalbnl (z, n);	/* subnormal output */  else    {      o.parts32.w0 = j;      z = o.value;    }  return s * z;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -