⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_sqrt.c

📁 glibc 库, 不仅可以学习使用库函数,还可以学习函数的具体实现,是提高功力的好资料
💻 C
字号:
/* Double-precision floating point square root.   Copyright (C) 1997, 2002, 2003, 2004 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  */#include <math.h>#include <math_private.h>#include <fenv_libc.h>#include <inttypes.h>#include <sysdep.h>#include <ldsodefs.h>static const double almost_half = 0.5000000000000001;	/* 0.5 + 2^-53 */static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };static const float two108 = 3.245185536584267269e+32;static const float twom54 = 5.551115123125782702e-17;extern const float __t_sqrt[1024];/* The method is based on a description in   Computation of elementary functions on the IBM RISC System/6000 processor,   P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.   Basically, it consists of two interleaved Newton-Rhapson approximations,   one to find the actual square root, and one to find its reciprocal   without the expense of a division operation.   The tricky bit here   is the use of the POWER/PowerPC multiply-add operation to get the   required accuracy with high speed.   The argument reduction works by a combination of table lookup to   obtain the initial guesses, and some careful modification of the   generated guesses (which mostly runs on the integer unit, while the   Newton-Rhapson is running on the FPU).  */#ifdef __STDC__double__slow_ieee754_sqrt (double x)#elsedouble__slow_ieee754_sqrt (x)     double x;#endif{  const float inf = a_inf.value;  if (x > 0)    {      /* schedule the EXTRACT_WORDS to get separation between the store         and the load.  */      ieee_double_shape_type ew_u;      ieee_double_shape_type iw_u;      ew_u.value = (x);      if (x != inf)	{	  /* Variables named starting with 's' exist in the	     argument-reduced space, so that 2 > sx >= 0.5,	     1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .	     Variables named ending with 'i' are integer versions of	     floating-point values.  */	  double sx;	/* The value of which we're trying to find the			   square root.  */	  double sg, g;	/* Guess of the square root of x.  */	  double sd, d;	/* Difference between the square of the guess and x.  */	  double sy;	/* Estimate of 1/2g (overestimated by 1ulp).  */	  double sy2;	/* 2*sy */	  double e;	/* Difference between y*g and 1/2 (se = e * fsy).  */	  double shx;	/* == sx * fsg */	  double fsg;	/* sg*fsg == g.  */	  fenv_t fe;	/* Saved floating-point environment (stores rounding			   mode and whether the inexact exception is			   enabled).  */	  uint32_t xi0, xi1, sxi, fsgi;	  const float *t_sqrt;	  fe = fegetenv_register ();	  /* complete the EXTRACT_WORDS (xi0,xi1,x) operation.  */	  xi0 = ew_u.parts.msw;	  xi1 = ew_u.parts.lsw;	  relax_fenv_state ();	  sxi = (xi0 & 0x3fffffff) | 0x3fe00000;	  /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation	     between the store and the load.  */	  iw_u.parts.msw = sxi;	  iw_u.parts.lsw = xi1;	  t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);	  sg = t_sqrt[0];	  sy = t_sqrt[1];	  /* complete the INSERT_WORDS (sx, sxi, xi1) operation.  */	  sx = iw_u.value;	  /* Here we have three Newton-Rhapson iterations each of a	     division and a square root and the remainder of the	     argument reduction, all interleaved.   */	  sd = -(sg * sg - sx);	  fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;	  sy2 = sy + sy;	  sg = sy * sd + sg;	/* 16-bit approximation to sqrt(sx). */	  /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation	     between the store and the load.  */	  INSERT_WORDS (fsg, fsgi, 0);	  iw_u.parts.msw = fsgi;	  iw_u.parts.lsw = (0);	  e = -(sy * sg - almost_half);	  sd = -(sg * sg - sx);	  if ((xi0 & 0x7ff00000) == 0)	    goto denorm;	  sy = sy + e * sy2;	  sg = sg + sy * sd;	/* 32-bit approximation to sqrt(sx).  */	  sy2 = sy + sy;	  /* complete the INSERT_WORDS (fsg, fsgi, 0) operation.  */	  fsg = iw_u.value;	  e = -(sy * sg - almost_half);	  sd = -(sg * sg - sx);	  sy = sy + e * sy2;	  shx = sx * fsg;	  sg = sg + sy * sd;	/* 64-bit approximation to sqrt(sx),				   but perhaps rounded incorrectly.  */	  sy2 = sy + sy;	  g = sg * fsg;	  e = -(sy * sg - almost_half);	  d = -(g * sg - shx);	  sy = sy + e * sy2;	  fesetenv_register (fe);	  return g + sy * d;	denorm:	  /* For denormalised numbers, we normalise, calculate the	     square root, and return an adjusted result.  */	  fesetenv_register (fe);	  return __slow_ieee754_sqrt (x * two108) * twom54;	}    }  else if (x < 0)    {      /* For some reason, some PowerPC32 processors don't implement         FE_INVALID_SQRT.  */#ifdef FE_INVALID_SQRT      feraiseexcept (FE_INVALID_SQRT);      if (!fetestexcept (FE_INVALID))#endif	feraiseexcept (FE_INVALID);      x = a_nan.value;    }  return f_wash (x);}#ifdef __STDC__double__ieee754_sqrt (double x)#elsedouble__ieee754_sqrt (x)     double x;#endif{  double z;  /* If the CPU is 64-bit we can use the optional FP instructions.  */  if (__CPU_HAS_FSQRT)    {      /* Volatile is required to prevent the compiler from moving the          fsqrt instruction above the branch.  */      __asm __volatile ("	fsqrt	%0,%1\n"				:"=f" (z):"f" (x));    }  else    z = __slow_ieee754_sqrt (x);  return z;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -