📄 jdhuff.pas
字号:
code : uInt;
var
sym : int;
begin
{ Note that huffsize[] and huffcode[] are filled in code-length order,
paralleling the order of the symbols themselves in htbl^.huffval[]. }
{ Find the input Huffman table }
if (tblno < 0) or (tblno >= NUM_HUFF_TBLS) then
ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tblno);
if isDC then
htbl := cinfo^.dc_huff_tbl_ptrs[tblno]
else
htbl := cinfo^.ac_huff_tbl_ptrs[tblno];
if (htbl = NIL) then
ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tblno);
{ Allocate a workspace if we haven't already done so. }
if (pdtbl = NIL) then
pdtbl := d_derived_tbl_ptr(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(d_derived_tbl)) );
dtbl := pdtbl;
dtbl^.pub := htbl; { fill in back link }
{ Figure C.1: make table of Huffman code length for each symbol }
p := 0;
for l := 1 to 16 do
begin
i := int(htbl^.bits[l]);
if (i < 0) or (p + i > 256) then { protect against table overrun }
ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE);
while (i > 0) do
begin
huffsize[p] := byte(l);
Inc(p);
Dec(i);
end;
end;
huffsize[p] := 0;
numsymbols := p;
{ Figure C.2: generate the codes themselves }
{ We also validate that the counts represent a legal Huffman code tree. }
code := 0;
si := huffsize[0];
p := 0;
while (huffsize[p] <> 0) do
begin
while (( int (huffsize[p]) ) = si) do
begin
huffcode[p] := code;
Inc(p);
Inc(code);
end;
{ code is now 1 more than the last code used for codelength si; but
it must still fit in si bits, since no code is allowed to be all ones. }
if (INT32(code) >= (INT32(1) shl si)) then
ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE);
code := code shl 1;
Inc(si);
end;
{ Figure F.15: generate decoding tables for bit-sequential decoding }
p := 0;
for l := 1 to 16 do
begin
if (htbl^.bits[l] <> 0) then
begin
{ valoffset[l] = huffval[] index of 1st symbol of code length l,
minus the minimum code of length l }
dtbl^.valoffset[l] := INT32(p) - INT32(huffcode[p]);
Inc(p, htbl^.bits[l]);
dtbl^.maxcode[l] := huffcode[p-1]; { maximum code of length l }
end
else
begin
dtbl^.maxcode[l] := -1; { -1 if no codes of this length }
end;
end;
dtbl^.maxcode[17] := long($FFFFF); { ensures jpeg_huff_decode terminates }
{ Compute lookahead tables to speed up decoding.
First we set all the table entries to 0, indicating "too long";
then we iterate through the Huffman codes that are short enough and
fill in all the entries that correspond to bit sequences starting
with that code. }
MEMZERO(@dtbl^.look_nbits, SIZEOF(dtbl^.look_nbits));
p := 0;
for l := 1 to HUFF_LOOKAHEAD do
begin
for i := 1 to int (htbl^.bits[l]) do
begin
{ l := current code's length, p := its index in huffcode[] & huffval[]. }
{ Generate left-justified code followed by all possible bit sequences }
lookbits := huffcode[p] shl (HUFF_LOOKAHEAD-l);
for ctr := pred(1 shl (HUFF_LOOKAHEAD-l)) downto 0 do
begin
dtbl^.look_nbits[lookbits] := l;
dtbl^.look_sym[lookbits] := htbl^.huffval[p];
Inc(lookbits);
end;
Inc(p);
end;
end;
{ Validate symbols as being reasonable.
For AC tables, we make no check, but accept all byte values 0..255.
For DC tables, we require the symbols to be in range 0..15.
(Tighter bounds could be applied depending on the data depth and mode,
but this is sufficient to ensure safe decoding.) }
if (isDC) then
begin
for i := 0 to pred(numsymbols) do
begin
sym := htbl^.huffval[i];
if (sym < 0) or (sym > 15) then
ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE);
end;
end;
end;
{ Out-of-line code for bit fetching (shared with jdphuff.c).
See jdhuff.h for info about usage.
Note: current values of get_buffer and bits_left are passed as parameters,
but are returned in the corresponding fields of the state struct.
On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
of get_buffer to be used. (On machines with wider words, an even larger
buffer could be used.) However, on some machines 32-bit shifts are
quite slow and take time proportional to the number of places shifted.
(This is true with most PC compilers, for instance.) In this case it may
be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
average shift distance at the cost of more calls to jpeg_fill_bit_buffer. }
{$ifdef SLOW_SHIFT_32}
const
MIN_GET_BITS = 15; { minimum allowable value }
{$else}
const
MIN_GET_BITS = (BIT_BUF_SIZE-7);
{$endif}
{GLOBAL}
function jpeg_fill_bit_buffer (var state : bitread_working_state;
{register} get_buffer : bit_buf_type;
{register} bits_left : int;
nbits : int) : boolean;
label
no_more_bytes;
{ Load up the bit buffer to a depth of at least nbits }
var
{ Copy heavily used state fields into locals (hopefully registers) }
{register} next_input_byte : {const} JOCTETptr;
{register} bytes_in_buffer : size_t;
var
{register} c : int;
var
cinfo : j_decompress_ptr;
begin
next_input_byte := state.next_input_byte;
bytes_in_buffer := state.bytes_in_buffer;
cinfo := state.cinfo;
{ Attempt to load at least MIN_GET_BITS bits into get_buffer. }
{ (It is assumed that no request will be for more than that many bits.) }
{ We fail to do so only if we hit a marker or are forced to suspend. }
if (cinfo^.unread_marker = 0) then { cannot advance past a marker }
begin
while (bits_left < MIN_GET_BITS) do
begin
{ Attempt to read a byte }
if (bytes_in_buffer = 0) then
begin
if not cinfo^.src^.fill_input_buffer(cinfo) then
begin
jpeg_fill_bit_buffer := FALSE;
exit;
end;
next_input_byte := cinfo^.src^.next_input_byte;
bytes_in_buffer := cinfo^.src^.bytes_in_buffer;
end;
Dec(bytes_in_buffer);
c := GETJOCTET(next_input_byte^);
Inc(next_input_byte);
{ If it's $FF, check and discard stuffed zero byte }
if (c = $FF) then
begin
{ Loop here to discard any padding FF's on terminating marker,
so that we can save a valid unread_marker value. NOTE: we will
accept multiple FF's followed by a 0 as meaning a single FF data
byte. This data pattern is not valid according to the standard. }
repeat
if (bytes_in_buffer = 0) then
begin
if (not state.cinfo^.src^.fill_input_buffer (state.cinfo)) then
begin
jpeg_fill_bit_buffer := FALSE;
exit;
end;
next_input_byte := state.cinfo^.src^.next_input_byte;
bytes_in_buffer := state.cinfo^.src^.bytes_in_buffer;
end;
Dec(bytes_in_buffer);
c := GETJOCTET(next_input_byte^);
Inc(next_input_byte);
Until (c <> $FF);
if (c = 0) then
begin
{ Found FF/00, which represents an FF data byte }
c := $FF;
end
else
begin
{ Oops, it's actually a marker indicating end of compressed data.
Save the marker code for later use.
Fine point: it might appear that we should save the marker into
bitread working state, not straight into permanent state. But
once we have hit a marker, we cannot need to suspend within the
current MCU, because we will read no more bytes from the data
source. So it is OK to update permanent state right away. }
cinfo^.unread_marker := c;
{ See if we need to insert some fake zero bits. }
goto no_more_bytes;
end;
end;
{ OK, load c into get_buffer }
get_buffer := (get_buffer shl 8) or c;
Inc(bits_left, 8);
end { end while }
end
else
begin
no_more_bytes:
{ We get here if we've read the marker that terminates the compressed
data segment. There should be enough bits in the buffer register
to satisfy the request; if so, no problem. }
if (nbits > bits_left) then
begin
{ Uh-oh. Report corrupted data to user and stuff zeroes into
the data stream, so that we can produce some kind of image.
We use a nonvolatile flag to ensure that only one warning message
appears per data segment. }
if not cinfo^.entropy^.insufficient_data then
begin
WARNMS(j_common_ptr(cinfo), JWRN_HIT_MARKER);
cinfo^.entropy^.insufficient_data := TRUE;
end;
{ Fill the buffer with zero bits }
get_buffer := get_buffer shl (MIN_GET_BITS - bits_left);
bits_left := MIN_GET_BITS;
end;
end;
{ Unload the local registers }
state.next_input_byte := next_input_byte;
state.bytes_in_buffer := bytes_in_buffer;
state.get_buffer := get_buffer;
state.bits_left := bits_left;
jpeg_fill_bit_buffer := TRUE;
end;
{ Out-of-line code for Huffman code decoding.
See jdhuff.h for info about usage. }
{GLOBAL}
function jpeg_huff_decode (var state : bitread_working_state;
{register} get_buffer : bit_buf_type;
{register} bits_left : int;
htbl : d_derived_tbl_ptr;
min_bits : int) : int;
var
{register} l : int;
{register} code : INT32;
begin
l := min_bits;
{ HUFF_DECODE has determined that the code is at least min_bits }
{ bits long, so fetch that many bits in one swoop. }
{CHECK_BIT_BUFFER(state, l, return -1);}
if (bits_left < l) then
begin
if (not jpeg_fill_bit_buffer(state, get_buffer, bits_left, l)) then
begin
jpeg_huff_decode := -1;
exit;
end;
get_buffer := state.get_buffer;
bits_left := state.bits_left;
end;
{code := GET_BITS(l);}
Dec(bits_left, l);
code := (int(get_buffer shr bits_left)) and ( pred(1 shl l) );
{ Collect the rest of the Huffman code one bit at a time. }
{ This is per Figure F.16 in the JPEG spec. }
while (code > htbl^.maxcode[l]) do
begin
code := code shl 1;
{CHECK_BIT_BUFFER(state, 1, return -1);}
if (bits_left < 1) then
begin
if (not jpeg_fill_bit_buffer(state, get_buffer, bits_left, 1)) then
begin
jpeg_huff_decode := -1;
exit;
end;
get_buffer := state.get_buffer;
bits_left := state.bits_left;
end;
{code := code or GET_BITS(1);}
Dec(bits_left);
code := code or ( (int(get_buffer shr bits_left)) and pred(1 shl 1) );
Inc(l);
end;
{ Unload the local registers }
state.get_buffer := get_buffer;
state.bits_left := bits_left;
{ With garbage input we may reach the sentinel value l := 17. }
if (l > 16) then
begin
WARNMS(j_common_ptr(state.cinfo), JWRN_HUFF_BAD_CODE);
jpeg_huff_decode := 0; { fake a zero as the safest result }
exit;
end;
jpeg_huff_decode := htbl^.pub^.huffval[ int (code + htbl^.valoffset[l]) ];
end;
{ Figure F.12: extend sign bit.
On some machines, a shift and add will be faster than a table lookup. }
{$ifdef AVOID_TABLES}
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
{$else}
{$define HUFF_EXTEND(x,s)
if (x < extend_test[s]) then
:= x + extend_offset[s]
else
x;}
const
extend_test : array[0..16-1] of int = { entry n is 2**(n-1) }
($0000, $0001, $0002, $0004, $0008, $0010, $0020, $0040,
$0080, $0100, $0200, $0400, $0800, $1000, $2000, $4000);
const
extend_offset : array[0..16-1] of int = { entry n is (-1 << n) + 1 }
(0, ((-1) shl 1) + 1, ((-1) shl 2) + 1, ((-1) shl 3) + 1, ((-1) shl 4) + 1,
((-1) shl 5) + 1, ((-1) shl 6) + 1, ((-1) shl 7) + 1, ((-1) shl 8) + 1,
((-1) shl 9) + 1, ((-1) shl 10) + 1, ((-1) shl 11) + 1,((-1) shl 12) + 1,
((-1) shl 13) + 1, ((-1) shl 14) + 1, ((-1) shl 15) + 1);
{$endif} { AVOID_TABLES }
{ Check for a restart marker & resynchronize decoder.
Returns FALSE if must suspend. }
{LOCAL}
function process_restart (cinfo : j_decompress_ptr) : boolean;
var
entropy : huff_entropy_ptr;
ci : int;
begin
entropy := huff_entropy_ptr (cinfo^.entropy);
{ Throw away any unused bits remaining in bit buffer; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -