📄 jccoefct.pas
字号:
This amount of data is read from the source buffer, DCT'd and quantized,
and saved into the virtual arrays. We also generate suitable dummy blocks
as needed at the right and lower edges. (The dummy blocks are constructed
in the virtual arrays, which have been padded appropriately.) This makes
it possible for subsequent passes not to worry about real vs. dummy blocks.
We must also emit the data to the entropy encoder. This is conveniently
done by calling compress_output() after we've loaded the current strip
of the virtual arrays.
NB: input_buf contains a plane for each component in image. All
components are DCT'd and loaded into the virtual arrays in this pass.
However, it may be that only a subset of the components are emitted to
the entropy encoder during this first pass; be careful about looking
at the scan-dependent variables (MCU dimensions, etc). }
{METHODDEF}
function compress_first_pass (cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE) : boolean;
var
coef : my_coef_ptr;
last_iMCU_row : JDIMENSION;
blocks_across, MCUs_across, MCUindex : JDIMENSION;
bi, ci, h_samp_factor, block_row, block_rows, ndummy : int;
lastDC : JCOEF;
compptr : jpeg_component_info_ptr;
buffer : JBLOCKARRAY;
thisblockrow, lastblockrow : JBLOCKROW;
begin
coef := my_coef_ptr (cinfo^.coef);
last_iMCU_row := cinfo^.total_iMCU_rows - 1;
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
{ Align the virtual buffer for this component. }
buffer := cinfo^.mem^.access_virt_barray
(j_common_ptr(cinfo), coef^.whole_image[ci],
coef^.iMCU_row_num * compptr^.v_samp_factor,
JDIMENSION (compptr^.v_samp_factor), TRUE);
{ Count non-dummy DCT block rows in this iMCU row. }
if (coef^.iMCU_row_num < last_iMCU_row) then
block_rows := compptr^.v_samp_factor
else
begin
{ NB: can't use last_row_height here, since may not be set! }
block_rows := int (compptr^.height_in_blocks mod compptr^.v_samp_factor);
if (block_rows = 0) then
block_rows := compptr^.v_samp_factor;
end;
blocks_across := compptr^.width_in_blocks;
h_samp_factor := compptr^.h_samp_factor;
{ Count number of dummy blocks to be added at the right margin. }
ndummy := int (blocks_across mod h_samp_factor);
if (ndummy > 0) then
ndummy := h_samp_factor - ndummy;
{ Perform DCT for all non-dummy blocks in this iMCU row. Each call
on forward_DCT processes a complete horizontal row of DCT blocks. }
for block_row := 0 to pred(block_rows) do
begin
thisblockrow := buffer^[block_row];
cinfo^.fdct^.forward_DCT (cinfo, compptr,
input_buf^[ci],
thisblockrow,
JDIMENSION (block_row * DCTSIZE),
JDIMENSION (0),
blocks_across);
if (ndummy > 0) then
begin
{ Create dummy blocks at the right edge of the image. }
Inc(JBLOCK_PTR(thisblockrow), blocks_across); { => first dummy block }
jzero_far({FAR}pointer(thisblockrow), ndummy * SIZEOF(JBLOCK));
{lastDC := thisblockrow^[-1][0];}
{ work around Range Checking }
Dec(JBLOCK_PTR(thisblockrow));
lastDC := thisblockrow^[0][0];
Inc(JBLOCK_PTR(thisblockrow));
for bi := 0 to pred(ndummy) do
begin
thisblockrow^[bi][0] := lastDC;
end;
end;
end;
{ If at end of image, create dummy block rows as needed.
The tricky part here is that within each MCU, we want the DC values
of the dummy blocks to match the last real block's DC value.
This squeezes a few more bytes out of the resulting file... }
if (coef^.iMCU_row_num = last_iMCU_row) then
begin
Inc(blocks_across, ndummy); { include lower right corner }
MCUs_across := blocks_across div h_samp_factor;
for block_row := block_rows to pred(compptr^.v_samp_factor) do
begin
thisblockrow := buffer^[block_row];
lastblockrow := buffer^[block_row-1];
jzero_far({FAR} pointer(thisblockrow),
size_t(blocks_across * SIZEOF(JBLOCK)));
for MCUindex := 0 to pred(MCUs_across) do
begin
lastDC := lastblockrow^[h_samp_factor-1][0];
for bi := 0 to pred(h_samp_factor) do
begin
thisblockrow^[bi][0] := lastDC;
end;
Inc(JBLOCK_PTR(thisblockrow), h_samp_factor); { advance to next MCU in row }
Inc(JBLOCK_PTR(lastblockrow), h_samp_factor);
end;
end;
end;
Inc(compptr);
end;
{ NB: compress_output will increment iMCU_row_num if successful.
A suspension return will result in redoing all the work above next time.}
{ Emit data to the entropy encoder, sharing code with subsequent passes }
compress_first_pass := compress_output(cinfo, input_buf);
end;
{ Process some data in subsequent passes of a multi-pass case.
We process the equivalent of one fully interleaved MCU row ("iMCU" row)
per call, ie, v_samp_factor block rows for each component in the scan.
The data is obtained from the virtual arrays and fed to the entropy coder.
Returns TRUE if the iMCU row is completed, FALSE if suspended.
NB: input_buf is ignored; it is likely to be a NIL pointer. }
{METHODDEF}
function compress_output (cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE) : boolean;
var
coef : my_coef_ptr;
MCU_col_num : JDIMENSION; { index of current MCU within row }
blkn, ci, xindex, yindex, yoffset : int;
start_col : JDIMENSION;
buffer : array[0..MAX_COMPS_IN_SCAN-1] of JBLOCKARRAY;
buffer_ptr : JBLOCKROW;
compptr : jpeg_component_info_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
{ Align the virtual buffers for the components used in this scan.
NB: during first pass, this is safe only because the buffers will
already be aligned properly, so jmemmgr.c won't need to do any I/O. }
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
buffer[ci] := cinfo^.mem^.access_virt_barray (
j_common_ptr(cinfo), coef^.whole_image[compptr^.component_index],
coef^.iMCU_row_num * compptr^.v_samp_factor,
JDIMENSION (compptr^.v_samp_factor), FALSE);
end;
{ Loop to process one whole iMCU row }
for yoffset := coef^.MCU_vert_offset to pred(coef^.MCU_rows_per_iMCU_row) do
begin
for MCU_col_num := coef^.mcu_ctr to pred(cinfo^.MCUs_per_row) do
begin
{ Construct list of pointers to DCT blocks belonging to this MCU }
blkn := 0; { index of current DCT block within MCU }
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
start_col := MCU_col_num * compptr^.MCU_width;
for yindex := 0 to pred(compptr^.MCU_height) do
begin
buffer_ptr := JBLOCKROW(@ buffer[ci]^[yindex+yoffset]^[start_col]);
for xindex := 0 to pred(compptr^.MCU_width) do
begin
coef^.MCU_buffer[blkn] := buffer_ptr;
Inc(blkn);
Inc(JBLOCK_PTR(buffer_ptr));
end;
end;
end;
{ Try to write the MCU. }
if (not cinfo^.entropy^.encode_mcu (cinfo, coef^.MCU_buffer)) then
begin
{ Suspension forced; update state counters and exit }
coef^.MCU_vert_offset := yoffset;
coef^.mcu_ctr := MCU_col_num;
compress_output := FALSE;
exit;
end;
end;
{ Completed an MCU row, but perhaps not an iMCU row }
coef^.mcu_ctr := 0;
end;
{ Completed the iMCU row, advance counters for next one }
Inc(coef^.iMCU_row_num);
start_iMCU_row(cinfo);
compress_output := TRUE;
end;
{$endif} { FULL_COEF_BUFFER_SUPPORTED }
{ Initialize coefficient buffer controller. }
{GLOBAL}
procedure jinit_c_coef_controller (cinfo : j_compress_ptr;
need_full_buffer : boolean);
var
coef : my_coef_ptr;
var
buffer : JBLOCKROW;
i : int;
var
ci : int;
compptr : jpeg_component_info_ptr;
begin
coef := my_coef_ptr (
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(my_coef_controller)) );
cinfo^.coef := jpeg_c_coef_controller_ptr(coef);
coef^.pub.start_pass := start_pass_coef;
{ Create the coefficient buffer. }
if (need_full_buffer) then
begin
{$ifdef FULL_COEF_BUFFER_SUPPORTED}
{ Allocate a full-image virtual array for each component, }
{ padded to a multiple of samp_factor DCT blocks in each direction. }
compptr := jpeg_component_info_ptr(cinfo^.comp_info);
for ci := 0 to pred(cinfo^.num_components) do
begin
coef^.whole_image[ci] := cinfo^.mem^.request_virt_barray
(j_common_ptr(cinfo), JPOOL_IMAGE, FALSE,
JDIMENSION (jround_up( long (compptr^.width_in_blocks),
long (compptr^.h_samp_factor) )),
JDIMENSION (jround_up(long (compptr^.height_in_blocks),
long (compptr^.v_samp_factor))),
JDIMENSION (compptr^.v_samp_factor));
Inc(compptr);
end;
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_BAD_BUFFER_MODE);
{$endif}
end
else
begin
{ We only need a single-MCU buffer. }
buffer := JBLOCKROW (
cinfo^.mem^.alloc_large (j_common_ptr(cinfo), JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)) );
for i := 0 to pred(C_MAX_BLOCKS_IN_MCU) do
begin
coef^.MCU_buffer[i] := JBLOCKROW(@ buffer^[i]);
end;
coef^.whole_image[0] := NIL; { flag for no virtual arrays }
end;
end;
end.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -