📄 jccoefct.pas
字号:
Unit JcCoefCt;
{ This file contains the coefficient buffer controller for compression.
This controller is the top level of the JPEG compressor proper.
The coefficient buffer lies between forward-DCT and entropy encoding steps.}
{ Original: jccoefct.c; Copyright (C) 1994-1997, Thomas G. Lane. }
interface
uses
jmorecfg,
jinclude,
jerror,
jdeferr,
jutils,
jpeglib;
{$I jconfig.inc}
{ We use a full-image coefficient buffer when doing Huffman optimization,
and also for writing multiple-scan JPEG files. In all cases, the DCT
step is run during the first pass, and subsequent passes need only read
the buffered coefficients. }
{$ifdef ENTROPY_OPT_SUPPORTED}
{$define FULL_COEF_BUFFER_SUPPORTED}
{$else}
{$ifdef C_MULTISCAN_FILES_SUPPORTED}
{$define FULL_COEF_BUFFER_SUPPORTED}
{$endif}
{$endif}
{ Initialize coefficient buffer controller. }
{GLOBAL}
procedure jinit_c_coef_controller (cinfo : j_compress_ptr;
need_full_buffer : boolean);
implementation
{ Private buffer controller object }
type
my_coef_ptr = ^my_coef_controller;
my_coef_controller = record
pub : jpeg_c_coef_controller; { public fields }
iMCU_row_num : JDIMENSION; { iMCU row # within image }
mcu_ctr : JDIMENSION; { counts MCUs processed in current row }
MCU_vert_offset : int; { counts MCU rows within iMCU row }
MCU_rows_per_iMCU_row : int; { number of such rows needed }
{ For single-pass compression, it's sufficient to buffer just one MCU
(although this may prove a bit slow in practice). We allocate a
workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
MCU constructed and sent. (On 80x86, the workspace is FAR even though
it's not really very big; this is to keep the module interfaces unchanged
when a large coefficient buffer is necessary.)
In multi-pass modes, this array points to the current MCU's blocks
within the virtual arrays. }
MCU_buffer : array[0..C_MAX_BLOCKS_IN_MCU-1] of JBLOCKROW;
{ In multi-pass modes, we need a virtual block array for each component. }
whole_image : array[0..MAX_COMPONENTS-1] of jvirt_barray_ptr;
end;
{ Forward declarations }
{METHODDEF}
function compress_data(cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE) : boolean; far; forward;
{$ifdef FULL_COEF_BUFFER_SUPPORTED
{METHODDEF}
function compress_first_pass(cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE) : boolean; far; forward;
{METHODDEF}
function compress_output(cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE) : boolean; far; forward;
{$endif}
{LOCAL}
procedure start_iMCU_row (cinfo : j_compress_ptr);
{ Reset within-iMCU-row counters for a new row }
var
coef : my_coef_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
{ In an interleaved scan, an MCU row is the same as an iMCU row.
In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
But at the bottom of the image, process only what's left. }
if (cinfo^.comps_in_scan > 1) then
begin
coef^.MCU_rows_per_iMCU_row := 1;
end
else
begin
if (coef^.iMCU_row_num < (cinfo^.total_iMCU_rows-1)) then
coef^.MCU_rows_per_iMCU_row := cinfo^.cur_comp_info[0]^.v_samp_factor
else
coef^.MCU_rows_per_iMCU_row := cinfo^.cur_comp_info[0]^.last_row_height;
end;
coef^.mcu_ctr := 0;
coef^.MCU_vert_offset := 0;
end;
{ Initialize for a processing pass. }
{METHODDEF}
procedure start_pass_coef (cinfo : j_compress_ptr;
pass_mode : J_BUF_MODE); far;
var
coef : my_coef_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
coef^.iMCU_row_num := 0;
start_iMCU_row(cinfo);
case (pass_mode) of
JBUF_PASS_THRU:
begin
if (coef^.whole_image[0] <> NIL) then
ERREXIT(j_common_ptr(cinfo), JERR_BAD_BUFFER_MODE);
coef^.pub.compress_data := compress_data;
end;
{$ifdef FULL_COEF_BUFFER_SUPPORTED}
JBUF_SAVE_AND_PASS:
begin
if (coef^.whole_image[0] = NIL) then
ERREXIT(j_common_ptr(cinfo), JERR_BAD_BUFFER_MODE);
coef^.pub.compress_data := compress_first_pass;
end;
JBUF_CRANK_DEST:
begin
if (coef^.whole_image[0] = NIL) then
ERREXIT(j_common_ptr(cinfo), JERR_BAD_BUFFER_MODE);
coef^.pub.compress_data := compress_output;
end;
{$endif}
else
ERREXIT(j_common_ptr(cinfo), JERR_BAD_BUFFER_MODE);
end;
end;
{ Process some data in the single-pass case.
We process the equivalent of one fully interleaved MCU row ("iMCU" row)
per call, ie, v_samp_factor block rows for each component in the image.
Returns TRUE if the iMCU row is completed, FALSE if suspended.
NB: input_buf contains a plane for each component in image,
which we index according to the component's SOF position. }
{METHODDEF}
function compress_data (cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE) : boolean;
var
coef : my_coef_ptr;
MCU_col_num : JDIMENSION; { index of current MCU within row }
last_MCU_col : JDIMENSION;
last_iMCU_row : JDIMENSION;
blkn, bi, ci, yindex, yoffset, blockcnt : int;
ypos, xpos : JDIMENSION;
compptr : jpeg_component_info_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
last_MCU_col := cinfo^.MCUs_per_row - 1;
last_iMCU_row := cinfo^.total_iMCU_rows - 1;
{ Loop to write as much as one whole iMCU row }
for yoffset := coef^.MCU_vert_offset to pred(coef^.MCU_rows_per_iMCU_row) do
begin
for MCU_col_num := coef^.mcu_ctr to last_MCU_col do
begin
{ Determine where data comes from in input_buf and do the DCT thing.
Each call on forward_DCT processes a horizontal row of DCT blocks
as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
sequentially. Dummy blocks at the right or bottom edge are filled in
specially. The data in them does not matter for image reconstruction,
so we fill them with values that will encode to the smallest amount of
data, viz: all zeroes in the AC entries, DC entries equal to previous
block's DC value. (Thanks to Thomas Kinsman for this idea.) }
blkn := 0;
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
if (MCU_col_num < last_MCU_col) then
blockcnt := compptr^.MCU_width
else
blockcnt := compptr^.last_col_width;
xpos := MCU_col_num * compptr^.MCU_sample_width;
ypos := yoffset * DCTSIZE; { ypos = (yoffset+yindex) * DCTSIZE }
for yindex := 0 to pred(compptr^.MCU_height) do
begin
if (coef^.iMCU_row_num < last_iMCU_row) or
(yoffset+yindex < compptr^.last_row_height) then
begin
cinfo^.fdct^.forward_DCT (cinfo, compptr,
input_buf^[compptr^.component_index],
coef^.MCU_buffer[blkn],
ypos, xpos, JDIMENSION (blockcnt));
if (blockcnt < compptr^.MCU_width) then
begin
{ Create some dummy blocks at the right edge of the image. }
jzero_far({FAR}pointer(coef^.MCU_buffer[blkn + blockcnt]),
(compptr^.MCU_width - blockcnt) * SIZEOF(JBLOCK));
for bi := blockcnt to pred(compptr^.MCU_width) do
begin
coef^.MCU_buffer[blkn+bi]^[0][0] := coef^.MCU_buffer[blkn+bi-1]^[0][0];
end;
end;
end
else
begin
{ Create a row of dummy blocks at the bottom of the image. }
jzero_far({FAR}pointer(coef^.MCU_buffer[blkn]),
compptr^.MCU_width * SIZEOF(JBLOCK));
for bi := 0 to pred(compptr^.MCU_width) do
begin
coef^.MCU_buffer[blkn+bi]^[0][0] := coef^.MCU_buffer[blkn-1]^[0][0];
end;
end;
Inc(blkn, compptr^.MCU_width);
Inc(ypos, DCTSIZE);
end;
end;
{ Try to write the MCU. In event of a suspension failure, we will
re-DCT the MCU on restart (a bit inefficient, could be fixed...) }
if (not cinfo^.entropy^.encode_mcu (cinfo, JBLOCKARRAY(@coef^.MCU_buffer)^)) then
begin
{ Suspension forced; update state counters and exit }
coef^.MCU_vert_offset := yoffset;
coef^.mcu_ctr := MCU_col_num;
compress_data := FALSE;
exit;
end;
end;
{ Completed an MCU row, but perhaps not an iMCU row }
coef^.mcu_ctr := 0;
end;
{ Completed the iMCU row, advance counters for next one }
Inc(coef^.iMCU_row_num);
start_iMCU_row(cinfo);
compress_data := TRUE;
end;
{$ifdef FULL_COEF_BUFFER_SUPPORTED}
{ Process some data in the first pass of a multi-pass case.
We process the equivalent of one fully interleaved MCU row ("iMCU" row)
per call, ie, v_samp_factor block rows for each component in the image.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -