⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfm_desc.c

📁 开源的目录加密软件
💻 C
📖 第 1 页 / 共 2 页
字号:
   XFREE(a);}static int exptmod(void *a, void *b, void *c, void *d){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   LTC_ARGCHK(c != NULL);   LTC_ARGCHK(d != NULL);   return tfm_to_ltc_error(fp_exptmod(a,b,c,d));}   static int isprime(void *a, int *b){   LTC_ARGCHK(a != NULL);   LTC_ARGCHK(b != NULL);   *b = (fp_isprime(a) == FP_YES) ? LTC_MP_YES : LTC_MP_NO;   return CRYPT_OK;}#if defined(MECC) && defined(MECC_ACCEL)static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp){   fp_int t1, t2;   fp_digit mp;   LTC_ARGCHK(P       != NULL);   LTC_ARGCHK(R       != NULL);   LTC_ARGCHK(modulus != NULL);   LTC_ARGCHK(Mp      != NULL);   mp = *((fp_digit*)Mp);   fp_init(&t1);   fp_init(&t2);   if (P != R) {      fp_copy(P->x, R->x);      fp_copy(P->y, R->y);      fp_copy(P->z, R->z);   }   /* t1 = Z * Z */   fp_sqr(R->z, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* Z = Y * Z */   fp_mul(R->z, R->y, R->z);   fp_montgomery_reduce(R->z, modulus, mp);   /* Z = 2Z */   fp_add(R->z, R->z, R->z);   if (fp_cmp(R->z, modulus) != FP_LT) {      fp_sub(R->z, modulus, R->z);   }      /* &t2 = X - T1 */   fp_sub(R->x, &t1, &t2);   if (fp_cmp_d(&t2, 0) == FP_LT) {      fp_add(&t2, modulus, &t2);   }   /* T1 = X + T1 */   fp_add(&t1, R->x, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* T2 = T1 * T2 */   fp_mul(&t1, &t2, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T1 = 2T2 */   fp_add(&t2, &t2, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* T1 = T1 + T2 */   fp_add(&t1, &t2, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* Y = 2Y */   fp_add(R->y, R->y, R->y);   if (fp_cmp(R->y, modulus) != FP_LT) {      fp_sub(R->y, modulus, R->y);   }   /* Y = Y * Y */   fp_sqr(R->y, R->y);   fp_montgomery_reduce(R->y, modulus, mp);   /* T2 = Y * Y */   fp_sqr(R->y, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T2 = T2/2 */   if (fp_isodd(&t2)) {      fp_add(&t2, modulus, &t2);   }   fp_div_2(&t2, &t2);   /* Y = Y * X */   fp_mul(R->y, R->x, R->y);   fp_montgomery_reduce(R->y, modulus, mp);   /* X  = T1 * T1 */   fp_sqr(&t1, R->x);   fp_montgomery_reduce(R->x, modulus, mp);   /* X = X - Y */   fp_sub(R->x, R->y, R->x);   if (fp_cmp_d(R->x, 0) == FP_LT) {      fp_add(R->x, modulus, R->x);   }   /* X = X - Y */   fp_sub(R->x, R->y, R->x);   if (fp_cmp_d(R->x, 0) == FP_LT) {      fp_add(R->x, modulus, R->x);   }   /* Y = Y - X */        fp_sub(R->y, R->x, R->y);   if (fp_cmp_d(R->y, 0) == FP_LT) {      fp_add(R->y, modulus, R->y);   }   /* Y = Y * T1 */   fp_mul(R->y, &t1, R->y);   fp_montgomery_reduce(R->y, modulus, mp);   /* Y = Y - T2 */   fp_sub(R->y, &t2, R->y);   if (fp_cmp_d(R->y, 0) == FP_LT) {      fp_add(R->y, modulus, R->y);   }    return CRYPT_OK;}/**   Add two ECC points   @param P        The point to add   @param Q        The point to add   @param R        [out] The destination of the double   @param modulus  The modulus of the field the ECC curve is in   @param mp       The "b" value from montgomery_setup()   @return CRYPT_OK on success*/static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp){   fp_int  t1, t2, x, y, z;   fp_digit mp;        LTC_ARGCHK(P       != NULL);   LTC_ARGCHK(Q       != NULL);   LTC_ARGCHK(R       != NULL);   LTC_ARGCHK(modulus != NULL);   LTC_ARGCHK(Mp      != NULL);   mp = *((fp_digit*)Mp);   fp_init(&t1);   fp_init(&t2);   fp_init(&x);   fp_init(&y);   fp_init(&z);   /* should we dbl instead? */   fp_sub(modulus, Q->y, &t1);   if ( (fp_cmp(P->x, Q->x) == FP_EQ) &&         (Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) &&        (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) {        return tfm_ecc_projective_dbl_point(P, R, modulus, Mp);   }   fp_copy(P->x, &x);   fp_copy(P->y, &y);   fp_copy(P->z, &z);   /* if Z is one then these are no-operations */   if (Q->z != NULL) {      /* T1 = Z' * Z' */      fp_sqr(Q->z, &t1);      fp_montgomery_reduce(&t1, modulus, mp);      /* X = X * T1 */      fp_mul(&t1, &x, &x);      fp_montgomery_reduce(&x, modulus, mp);      /* T1 = Z' * T1 */      fp_mul(Q->z, &t1, &t1);      fp_montgomery_reduce(&t1, modulus, mp);      /* Y = Y * T1 */      fp_mul(&t1, &y, &y);      fp_montgomery_reduce(&y, modulus, mp);   }   /* T1 = Z*Z */   fp_sqr(&z, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* T2 = X' * T1 */   fp_mul(Q->x, &t1, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T1 = Z * T1 */   fp_mul(&z, &t1, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* T1 = Y' * T1 */   fp_mul(Q->y, &t1, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* Y = Y - T1 */   fp_sub(&y, &t1, &y);   if (fp_cmp_d(&y, 0) == FP_LT) {      fp_add(&y, modulus, &y);   }   /* T1 = 2T1 */   fp_add(&t1, &t1, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* T1 = Y + T1 */   fp_add(&t1, &y, &t1);   if (fp_cmp(&t1, modulus) != FP_LT) {      fp_sub(&t1, modulus, &t1);   }   /* X = X - T2 */   fp_sub(&x, &t2, &x);   if (fp_cmp_d(&x, 0) == FP_LT) {      fp_add(&x, modulus, &x);   }   /* T2 = 2T2 */   fp_add(&t2, &t2, &t2);   if (fp_cmp(&t2, modulus) != FP_LT) {      fp_sub(&t2, modulus, &t2);   }   /* T2 = X + T2 */   fp_add(&t2, &x, &t2);   if (fp_cmp(&t2, modulus) != FP_LT) {      fp_sub(&t2, modulus, &t2);   }   /* if Z' != 1 */   if (Q->z != NULL) {      /* Z = Z * Z' */      fp_mul(&z, Q->z, &z);      fp_montgomery_reduce(&z, modulus, mp);   }   /* Z = Z * X */   fp_mul(&z, &x, &z);   fp_montgomery_reduce(&z, modulus, mp);   /* T1 = T1 * X  */   fp_mul(&t1, &x, &t1);   fp_montgomery_reduce(&t1, modulus, mp);   /* X = X * X */   fp_sqr(&x, &x);   fp_montgomery_reduce(&x, modulus, mp);   /* T2 = T2 * x */   fp_mul(&t2, &x, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* T1 = T1 * X  */   fp_mul(&t1, &x, &t1);   fp_montgomery_reduce(&t1, modulus, mp);    /* X = Y*Y */   fp_sqr(&y, &x);   fp_montgomery_reduce(&x, modulus, mp);   /* X = X - T2 */   fp_sub(&x, &t2, &x);   if (fp_cmp_d(&x, 0) == FP_LT) {      fp_add(&x, modulus, &x);   }   /* T2 = T2 - X */   fp_sub(&t2, &x, &t2);   if (fp_cmp_d(&t2, 0) == FP_LT) {      fp_add(&t2, modulus, &t2);   }    /* T2 = T2 - X */   fp_sub(&t2, &x, &t2);   if (fp_cmp_d(&t2, 0) == FP_LT) {      fp_add(&t2, modulus, &t2);   }   /* T2 = T2 * Y */   fp_mul(&t2, &y, &t2);   fp_montgomery_reduce(&t2, modulus, mp);   /* Y = T2 - T1 */   fp_sub(&t2, &t1, &y);   if (fp_cmp_d(&y, 0) == FP_LT) {      fp_add(&y, modulus, &y);   }   /* Y = Y/2 */   if (fp_isodd(&y)) {      fp_add(&y, modulus, &y);   }   fp_div_2(&y, &y);   fp_copy(&x, R->x);   fp_copy(&y, R->y);   fp_copy(&z, R->z);      return CRYPT_OK;}#endifconst ltc_math_descriptor tfm_desc = {   "TomsFastMath",   (int)DIGIT_BIT,   &init,   &init_copy,   &deinit,   &neg,   &copy,   &set_int,   &get_int,   &get_digit,   &get_digit_count,   &compare,   &compare_d,   &count_bits,   &count_lsb_bits,   &twoexpt,   &read_radix,   &write_radix,   &unsigned_size,   &unsigned_write,   &unsigned_read,   &add,   &addi,   &sub,   &subi,   &mul,   &muli,   &sqr,   &divide,   &div_2,   &modi,   &gcd,   &lcm,   &mulmod,   &sqrmod,   &invmod,   &montgomery_setup,   &montgomery_normalization,   &montgomery_reduce,   &montgomery_deinit,   &exptmod,   &isprime,#ifdef MECC#ifdef MECC_FP   &ltc_ecc_fp_mulmod,#else   &ltc_ecc_mulmod,#endif /* MECC_FP */#ifdef MECC_ACCEL   &tfm_ecc_projective_add_point,   &tfm_ecc_projective_dbl_point,#else   &ltc_ecc_projective_add_point,   &ltc_ecc_projective_dbl_point,#endif   &ltc_ecc_map,#else   NULL, NULL, NULL, NULL,#endif#ifdef MRSA   &rsa_make_key,   &rsa_exptmod,#else   NULL, NULL#endif   };#endif/* $Source: /cvs/libtom/libtomcrypt/src/math/tfm_desc.c,v $ *//* $Revision: 1.23 $ *//* $Date: 2006/06/09 22:17:53 $ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -