⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmc_16qam_cha.m

📁 B3g_phase2_C语言_Matlab程序及说明
💻 M
📖 第 1 页 / 共 2 页
字号:
clear
% Define parameters of MC filter banks
% Define parameters of MC filter banks
load ptfilter                                                             % load prototype filter coefficients which are saved in h
prototype_filter=h;
Carrier_number=16;                                                        % Number of subcarriers
SubCarrier_first=2;
SubCarrier_last=13;
Carrier_number_used=SubCarrier_last-SubCarrier_first+1;
Sampling_factor=18;                                                       % Factor of upsampling and downsampling
Oversampling_factor=2;    
Filter_length=217;                                                        % Length of filters in taps

% Define the slot structure
Spread_factor=16;                                                         % Spread factor
Subslot_number=8;                                                         % Number of subslots
Symbol_number_subslot=5;                                                  % Symbol number in a subslot
Symbol_number_slot=Subslot_number*Symbol_number_subslot;                  % Symbol number in a slot
Pilot_length=32;                                                          % Length of pilot signal in chips
Gaurd_length=16;                                                           % Length of gaurd time in chips
GaurdPilot_length=Gaurd_length+Pilot_length;                              % Total length of gaurd time and pilot signal in chips
SubslotData_length=Symbol_number_subslot*Spread_factor;                   % Length of data in a subslot in chips
Subslot_length=SubslotData_length+GaurdPilot_length;                      % Length of a subslot in chips
SlotData_length=Subslot_number*SubslotData_length;                        % Length of data in a slot in chips
Slot_length=Subslot_number*Subslot_length+GaurdPilot_length;              % Length of a slot in chips 

% Define spreading codes
Walsh=[1 1; 1 -1]/sqrt(2);                                                % Walsh matrix for speading codes 
for k=1:log2(Spread_factor)-1
    Walsh=[Walsh Walsh;Walsh -Walsh]/sqrt(2);
end
Code_channel=Spread_factor;                                               % Number of code channels
Walsh=Walsh(1:Code_channel,:)';                                           % The codes come from Walsh matrix 

% Initialize the scrambler 
PN_RegStateI = [zeros(1,14) 1];  
PN_RegStateQ = [zeros(1,14) 1];  
PN_PolynI = [0 1 0 0 0 1 1 1 0 1 0 0 0 0 1];  
PN_PolynQ = [0 0 1 1 1 0 0 0 1 1 1 1 0 0 1];

%Define the channel
Antenna_number=4;                                                         % Number of receive antennas
Path_number=12;                                                            % Number of paths  
Path_number_mc=6;
Path_Gain=[0.8084 0.462 0.253 0.259 0.0447 0.01];                         % Profile of channel model
delay=[0 12 30  52 78  90]*2;                                             % Delays of paths

Path_Gain=exp(-(0:5)/3);
delay=round((0:1/5:1)*10*23.04);

% Path_Gain=10.^(([0 -1 -9 -10 -15 -20])/20);                                        % Profile of channel model
% Path_Gain=[Path_Gain/sqrt(Path_Gain*Path_Gain')];
% 
% delay=round([0 0.310 0.710  1.09 1.73  2.51]*23.04);   

Fc = 3.2e9;                                                               % Carrier frequency 
V =250;                                                                   % moving speed in km/h
Tc = 1/1.28e6/Sampling_factor;                                            % Chip width 
Time_Begin = 0;                                                           % Initializing the time
Phase = 2*pi*rand(1,2);                                                   % Initializing the phase

% Define pilot signal
%Pilot_sequence=[-1 1 j -1 -1 -1 j 1 -1 1 j -1 -1 -1 j 1 -1 1 j -1 -1 -1 j 1];
%Pilot_sequence=[1 j 1 -1 1 1 -1 -j 1 -j 1 1 1 -1 -1 j];
Pilot_sequence=[1 j 1 -1 1 1 -1 -j 1 -j 1 1 1 -1 -1 j 1 j 1 -1 1 1 -1 -j 1 -j 1 1 1 -1 -1 j];
for m=1:Path_number
    Pilot_matrix(m,:)=[Pilot_sequence(Pilot_length-m+2:Pilot_length) Pilot_sequence(1:Pilot_length-m+1)];
end
Gaurd_Pilot=[Pilot_sequence(Pilot_length-Gaurd_length+1:Pilot_length) Pilot_sequence];

% Define Error Code
trel=poly2trellis(9,[561 753]); 
InputN=1; OutputN=2;
tblen=64;
Slot_number=4;
Symbol_bitN=4;                                                                % 2 for QPSK and 4 for 16QAM
Map_16QAM=[3+j*3 3+j 3-j*3 3-j 1+j*3 1+j 1-j*3 1-j -3+j*3 -3+j -3-j*3 -3-j -1+j*3 -1+j -1-j*3 -1-j]/sqrt(10);

msg_L=Symbol_bitN*SlotData_length/OutputN*InputN*Slot_number-InputN*tblen;    % Number of message bits
msg_SlotL=Symbol_bitN*SlotData_length/OutputN*InputN;
code_L=Symbol_bitN*SlotData_length*Slot_number;
code_SlotL=Symbol_bitN*SlotData_length;

Intl_length =Subslot_number;
% Raised cosine filter for interpolation
rcflt3=rcosfir(0.15,6,3,1);

% Bit error rate
ber=zeros(3,20);
format long

% Main loop

for Antenna_number=2.^(0:0);                                                         % Number of receive antennas
    
    SNR1=10; SNR2=20;
    
    for SNR=SNR1:SNR2
        
        errors=0;
                                                                        
        for k=1:2000      
            SNR
            k
            msg=randint(Carrier_number_used,msg_L,2);                                                                               % Random data
            msg=[msg zeros(Carrier_number_used,InputN*tblen)];
            for nc=1:Carrier_number_used 
                code(nc,:)=convenc(msg(nc,:),trel);                                                                            % Encode
                code(nc,:)=reshape(vec2mat(code(nc,:),Intl_length),1,code_L);                                               % Interleaving
            end
            %code=vec2mat(reshape(code,1,code_L*Carrier_number_used),code_L);

            for sn=0:Slot_number-1
                % Transmiter
                % Transmiter:Generate single-carrier baseband signals 
                [PN,PN_RegStateI,PN_RegStateQ]=Complex_PNGen(PN_PolynI,PN_PolynQ,PN_RegStateI,PN_RegStateQ,SlotData_length);   % get a complex PN sequence.
                
                for nc=1:Carrier_number_used 
                    s=[]; 
                    
                    %  x=((1-2*code(nc,sn*code_SlotL+(1:2:code_SlotL)))+j*(1-2*code(nc,sn*code_SlotL+(2:2:code_SlotL))))/sqrt(2); % QPSK mapping
                    
                    x=Map_16QAM(bi2de(vec2mat(code(nc,sn*code_SlotL+(1:code_SlotL)),4),'left-msb')'+1);                                                          % 16QAM mapping
                    
                    Tmp_s=reshape((Walsh*reshape(x,Code_channel,Symbol_number_slot))',1,SlotData_length).*PN;                  % spread spectrum modulation and interleving
                    %                Tmp_s=reshape((Walsh*reshape(x,Code_channel,Symbol_number_slot)),1,SlotData_length).*PN;                  % spread spectrum modulation without interleving
                    
                    Index_s=0;                                                                                                 % Insert pilot and gaurd 
                    for kk=1:Subslot_number
                        tmp=Tmp_s(Index_s+(1:SubslotData_length));
                        tmp=[Gaurd_Pilot tmp]; 
                        s=[s tmp];
                        Index_s=Index_s+SubslotData_length;
                    end
                    s=[s Gaurd_Pilot];
                    sb(nc,:)=s;              
                end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -