📄 gmc_16qam_turbodd_pic.m
字号:
clear
% Define the slot structure
Spread_factor=8; % Spread factor
Subslot_number=8; % Number of subslots
Symbol_number_subslot=13; % Symbol number in a subslot
Symbol_number_slot=Subslot_number*Symbol_number_subslot; % Symbol number in a slot
Pilot_length=16; % Length of pilot signal in chips
Gaurd_length=8; % Length of gaurd time in chips
GaurdPilot_length=Gaurd_length+Pilot_length; % Total length of gaurd time and pilot signal in chips
SubslotData_length=Symbol_number_subslot*Spread_factor; % Length of data in a subslot in chips
Subslot_length=SubslotData_length+GaurdPilot_length; % Length of a subslot in chips
SlotData_length=Subslot_number*SubslotData_length; % Length of data in a slot in chips
Slot_length=Subslot_number*Subslot_length+GaurdPilot_length; % Length of a slot in chips
%Define the channel
Antenna_number=4; % Number of receive antennas
Path_number=8; % Number of paths
% Path_Gain=[0.8084 0.462 0.253 0.259 0.0447 0.01]; % Profile of channel model
% delay=[0 18 36 54 72 90]*2; % Delays of paths
Delay_spread=10; % in us
Path_Gain=exp(-(0:1/(Path_number-1):1)*3*log(10));
Path_Gain=Path_Gain/sqrt(Path_Gain*Path_Gain');
delay=round((0:1/(Path_number-1):1)*Delay_spread*1.28);
Fc = 3.2e9; % Carrier frequency
V =250; % moving speed in km/h
Tc = 1/1.28e6/Sampling_factor; % Chip width
Time_Begin = 0; % Initializing the time
% Phase = 2*pi*rand(1,2); % Initializing the phase
% Define pilot signal
Pilot_sequence=[1 j 1 -1 1 1 -1 -j 1 -j 1 1 1 -1 -1 j];
%Pilot_sequence=[ 1 1 1 1 (1-j)/sqrt(2) -1 (1+j)/sqrt(2) -j...
% j -1 -j 1 (1+j)/sqrt(2) 1 (1-j)/sqrt(2) -j...
% -1 1 -1 1 (-1+j)/sqrt(2) -1 (-1-j)/sqrt(2) -j...
% -j -1 j 1 (-1-j)/sqrt(2) 1 (-1+j)/sqrt(2) -j];
for m=1:Path_number
Pilot_matrix(m,:)=[Pilot_sequence(Pilot_length-m+2:Pilot_length) Pilot_sequence(1:Pilot_length-m+1)];
end
Gaurd_Pilot=[Pilot_sequence(Pilot_length-Gaurd_length+1:Pilot_length) Pilot_sequence];
Gaurd_Pilot1=[zeros(1,Gaurd_length) Pilot_sequence];
% turbo code
poly_g1 = 11; % 1 0 1 1
poly_g2 = 13; % 1 1 0 1
MemLen = 3;
puncture = 0; % puncture = 0,rate=1/2;puncture = 1,no puncture rate =1/3
nIter = 7;
CodeRate = 1/(2+puncture);
%trel=poly2trellis(9,[561 753]);
%tblen=40;
InputN=1; OutputN=2;
Code_Rate=InputN/OutputN;
Symbol_bitN=4; % 2 for QPSK and 4 for 16QAM
nIterDD=4;
%msg_L=Symbol_bitN*SlotData_length/OutputN*InputN*Slot_number-InputN*tblen; % Number of message bits
Slot_number=64;
Packet_number=16;
Packet_Slot_number=Slot_number/Packet_number
Packet_msg_L=Symbol_bitN*Code_Rate*SlotData_length*Packet_Slot_number-MemLen;
Packet_code_L=Symbol_bitN*SlotData_length*Packet_Slot_number;
Slot_code_L=Symbol_bitN*SlotData_length;
[Inner_intl_table] = interleave(Packet_msg_L+MemLen, floor(sqrt((Packet_msg_L+MemLen)/2)));
[Outer_intl_table] = interleave(Packet_code_L*Packet_number,floor(sqrt((Packet_code_L*Packet_number)/2)))+1;
% Bit error rate
ber=zeros(nIterDD,5);
format long
% Main loop
for Antenna_number=2.^(0:0); % Number of receive antennas
SNR1=11; SNR2=12;
Phase = 2*pi*rand(Antenna_number,2); % Initializing the phase
for SNR=SNR1:SNR2
errors=zeros(1,nIterDD);
for k=1:2000
SNR
k
% Transmiter
% Transmiter: Generate transmitted bit stream
msg=randint(Packet_number,Packet_msg_L,2); % Random data
% Transmiter:Turbo encode and interleave
for np=0:packet_number-1
code_p(np,:) = TuEnc(msg(np,:), puncture, Inner_intl_table, poly_g1, poly_g2);
end
code=reshape(code_p,1,Packet_code_L*Packet_number);
code=code(Outer_intl_table);
% Transmiter:Generate single-carrier baseband signals
s=[];
for sn=0:Slot_number-1
[x] = Modulation(code(sn*Slot_code_L+(1:Slot_code_L)), 4);
Index_x=0;
for kk=1:Subslot_number
tmp=x(Index_x+(1:SubslotData_length));
tmp=[Gaurd_Pilot tmp];
s=[s tmp];
Index_x=Index_x+SubslotData_length;
end
s=[s Gaurd_Pilot];
end
% Channel
Signal_length=Slot_number*Slot_length; % Length of baseband signal
% Channel: The transmitted signal passes through multipath channel
for p=0:Path_number-1
ss(p+1,:)=[zeros(1,p) s(1:Signal_length-p)];
end
for na=1:Antenna_number
CH_Data = MultiCHannel(Path_Gain,Fc,V,Tc,Signal_length,Time_Begin,Phase(na,:));
Sm(na,:)=sum(ss.*CH_Data);
end
Time_Begin = Time_Begin+Signal_length;
% Channel: Add Gauss noise
Rm=awgn(Sm,SNR);%,'measured');
Noise_variance=sum(sum(abs(Rm-Sm).^2))/length(Sm)/Antenna_number;
% Receiver
for sn=0:Slot_number-1
R=Rm(:,sn*Slot_length+(1:Slot_length));
% Receiver: Channel estimation
Index_R=Gaurd_length;Fades=zeros(Antenna_number,Path_number*(Subslot_number+1));Index_Fades=0;
for kk=1:Subslot_number+1
Tmp_RP=R(:,Index_R+(1:Pilot_length));
Tmp_Fades=Tmp_RP*Pilot_matrix'/Pilot_length;
Fades(:,Index_Fades+(1:Path_number))=Tmp_Fades;
Index_R=Index_R+Subslot_length;
Index_Fades=Index_Fades+Path_number;
end
for p=1:Path_number
tmp_Fades=Fades(:,p:Path_number:end);
for na=1:Antenna_number
[Coefficients,Structure]=polyfit(0:Subslot_number,tmp_Fades(na,:),3);
[tmp_FadesP(na,:),delta]=polyval(Coefficients,0:0.5:Subslot_number,Structure);
end
Fades(:,p:Path_number:length(Fades))=tmp_FadesP(:,1:2:end);
FadesI(:,p:Path_number:length(Fades)-Path_number)=tmp_FadesP(:,2:2:end);
end
Index_R=Gaurd_length;Index_Fades=0;
for kk=1:Subslot_number+1
Tmp_Fades=Fades(:,Index_Fades+(1:Path_number));
Tmp_Noise = R(:,Index_R+(1:Pilot_length))-Tmp_Fades(:,1:Path_number)*Pilot_matrix;
Nv(kk)=sum(sum(abs(Tmp_Noise.*Tmp_Noise)))/Pilot_length/Antenna_number; % Estimate of noise variance
Index_R=Index_R+Subslot_length;
Index_Fades=Index_Fades+Path_number;
end
Tmp_Nv=sum(Nv)/(Subslot_number+1);
% Receiver: Equalization in DFT domain
Index_R=Pilot_length; Index_Fades=0;R_EQ=[];
for kk=0:Subslot_number-1
Tmp_Fades=(FadesI(:,Index_Fades+(1:Path_number)));
RM=R(:,Index_R+(1:Subslot_length));
RMC((sn*Subslot_number+kk)*Subslot_length+(1:Subslot_length))=sum(cyc_cov(RM,Tmp_Fades),1);
h_half((sn*Subslot_number+kk)*Path_number+(1:Path_number))=sum(self_cov(Tmp_Fades),1);
Index_Fades=Index_Fades+Path_number;
Index_R=Index_R+Subslot_length;
end
end
for n=1:nIterDD
for sn=0:Slot_number-1
for kk=0:Subslot_number-1
Tmp_RMC=RMC((sn*Subslot_number+kk)*Subslot_length+(1:Subslot_length));
Tmp_h_half=h_half((sn*Subslot_number+kk)*Path_number+(1:Path_number));
Tmp_h=[conj(Tmp_h_half(end:-1:2)) 0 Tmp_h_half(2:end)];
if n==1
x_rake=Tmp_RMC(Gaurd_length+(1:SubslotData_length));
Tmp_R_EQ=x_rake;
rou=Tmp_h_half(1);
x_sigma=ones(1,SubslotData_length)*(Noise_variance*rou+abs(Tmp_h*Tmp_h'));
for nn=1:3
[x_symbol,x_variance] =Symbol_Decision(Tmp_R_EQ,rou,x_sigma);
x_mean=[Gaurd_Pilot(Pilot_length+(Gaurd_length-Path_number+2:Gaurd_length)) x_symbol Gaurd_Pilot(1:Pilot_length)];
x_variance=[zeros(1,Path_number-1) x_variance zeros(1,Pilot_length)];
[x_intf, x_sigma]=Intf_Sigma(x_mean,x_variance,Tmp_h,SubslotData_length);
Tmp_R_EQ=x_rake-x_intf;
x_sigma=Noise_variance*rou+x_sigma;
end
LLR_D = Soft_Demod(Tmp_R_EQ, rou,x_sigma ,zeros(4,SubslotData_length), SubslotData_length);
else
LLR_P=reshape(LLR_DI(nc,(sn*Subslot_number+kk)*SubslotData_length*4+(1:SubslotData_length*4)),4,SubslotData_length);
[x_mean0, x_variance]=Mean_Var(LLR_P);
x_mean=[Gaurd_Pilot(Pilot_length+(Gaurd_length-Path_number+2:Gaurd_length)) x_mean0 Gaurd_Pilot(1:Pilot_length)];
x_variance=[zeros(1,Path_number-1) x_variance zeros(1,Pilot_length)];
rou =Tmp_h_half(1);
[x_intf, x_sigma]=Intf_Sigma(x_mean,x_variance,Tmp_h,SubslotData_length);
x_rake=Tmp_RMC(Gaurd_length+(1:SubslotData_length));
x_rec=x_intf+rou*x_mean0;
alpha=abs((x_rake*x_rec')/(x_rake*x_rake'));
Tmp_R_EQ=x_rake-alpha*x_intf;
x_sigma=Noise_variance*rou+alpha^2*x_sigma;
LLR_D = Soft_Demod(Tmp_R_EQ, rou,x_sigma ,LLR_P, SubslotData_length);
end
[Dem_signal((sn*Subslot_number+kk)*SubslotData_length*4+(1:SubslotData_length*4))]=LLR_D;
end
Dem_signal(Outer_intl_table)=Dem_signal;
Dem_signal_p=vec2mat(Dem_signal,Packet_number)';
for np=1:Packet_number
[decoded, LLR_all(np,:)] = TuDecLogMapNew(Dem_signal_p(np,:), puncture, nIter, Inner_intl_table, 1, 1, poly_g1, poly_g2);
errors(n)=errors(n)+sum(abs(decoded(1:msg_L)-msg(np,1:msg_L)));
end
LLR_DI=reshape(LLR_all,1,Packet_code_L*Packet_number);
LLR_DI=LLR_DI(Outer_intl_table);
end
end
errors
ber(:,SNR-SNR1+1)=errors'/k/msg_L/packet_N
if (errors(nIterDD)>300 & k>3)
break;
end
end
if ber(1,SNR-SNR1+1)<1.0*10^(-6)
break;
end
end
save ber_16QAM200v_1 ber
end
semilogy(SNR1:SNR2,ber(:,1:SNR2-SNR1+1)')
grid
xlabel('SNR of Received Signal(in dB)')
ylabel('Bit Error Rate')
pause(0.2)
save ber_16QAM200v_1 ber
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -