⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmc_16qam_turbo.m

📁 B3g_phase2_C语言_Matlab程序及说明
💻 M
📖 第 1 页 / 共 2 页
字号:
                    [x] = Modulation(code(nc,sn*code_SlotL+(1:code_SlotL)), 4);
                    
                    % Tmp_s=reshape((Walsh*reshape(x,Code_channel,Symbol_number_slot))',1,SlotData_length).*PN;                  % spread spectrum modulation and interleving
                    Tmp_s=x;
                    
                    Index_s=0;                                                                                                 % Insert pilot and gaurd 
                    for kk=1:Subslot_number
                        tmp=Tmp_s(Index_s+(1:SubslotData_length));
                        tmp=[Gaurd_Pilot tmp]; 
                        s=[s tmp];
                        Index_s=Index_s+SubslotData_length;
                    end
                    s=[s Gaurd_Pilot];
                    sb(nc,:)=s;              
                end
                
                % Transmiter:Combine subcarrier baseband signals into multicarrier baseband signal
                st=mc_sfb(sb,Slot_length,prototype_filter,Carrier_number,SubCarrier_first,SubCarrier_last,Sampling_factor,Filter_length);
                
                % Channel
                Signal_length=Sampling_factor*(Slot_length-1)+Filter_length+delay(Path_number_mc);                                 % Length of multicarrier baseband signal 
                
                for p=1:Path_number_mc
                    ss(p,:)=[zeros(1,delay(p)) st zeros(1,delay(Path_number_mc)-delay(p))];                            
                end
                
                for na=1:Antenna_number
                    CH_Data = MultiCHannel(Path_Gain,Fc,V,Tc,Signal_length,Time_Begin,Phase(na,:));
                    Sm(na,:)=sum(ss.*CH_Data);                                                     % The transmitted signal is passed through multipath channel 
                end 
                
                
                
                Time_Begin = Time_Begin+Signal_length; 
                
                %    Add Gauss noise
                Rm=awgn(Sm,SNR);%-10*log10(Spread_factor/Code_channel)-10*log10(Sampling_factor/Carrier_number_used),'measured');
                
                Noise_variance=sum(sum(abs(Rm-Sm).^2))/length(Sm)/Antenna_number;
                %    Receiver
                %    Receiver:Separate the received mulicarrier signal into subcarrier signals
                for na=1:Antenna_number
                    %                     rs(na,:,:)=mc_afb(Rm(na,:),Slot_length,prototype_filter,Carrier_number,SubCarrier_first,SubCarrier_last,Sampling_factor,Oversampling_factor,Filter_length);
                    tmp=mc_afb(Rm(na,:),Slot_length,prototype_filter,Carrier_number,SubCarrier_first,SubCarrier_last,Sampling_factor,Oversampling_factor,Filter_length);
                    rs(na,:,:)=SC_sync(tmp,Slot_length,Subslot_length,Subslot_number,Gaurd_Pilot1,Interp_factor,rcflt,Path_number);             
                end 
                %    pause
                %    Receiver: Process each subcarrier separately
                
                for nc=1:Carrier_number_used
                    R=reshape(rs(:,nc,:),Antenna_number,length(rs(:,nc,:))); 
                    
                    %    Receiver: Channel estimation 
                    Index_R=Gaurd_length;Fades=zeros(Antenna_number,Path_number*(Subslot_number+1));Index_Fades=0;
                    for kk=1:Subslot_number+1
                        Tmp_RP=R(:,Index_R+(1:Pilot_length));
                        Tmp_Fades=Tmp_RP*Pilot_matrix'/Pilot_length;
                        Fades(:,Index_Fades+(1:Path_number))=Tmp_Fades;
                        Index_R=Index_R+Subslot_length;
                        Index_Fades=Index_Fades+Path_number;
                    end
                    
                    for p=1:Path_number
                        tmp_Fades=Fades(:,p:Path_number:end);
                        for na=1:Antenna_number
                            %tmp_FadesP(na,:)=interp(tmp_Fades(na,:),2);
                            [Coefficients,Structure]=polyfit(0:Subslot_number,tmp_Fades(na,:),3);
                            [tmp_FadesP(na,:),delta]=polyval(Coefficients,0:0.5:Subslot_number,Structure);
                            %tmp_FadesP(na,:)=spline(0:Subslot_number,tmp_Fades(na,:),0:Subslot_number);
                        end
                        Fades(:,p:Path_number:length(Fades))=tmp_FadesP(:,1:2:end);
                        FadesI(:,p:Path_number:length(Fades)-Path_number)=tmp_FadesP(:,2:2:end);
                    end
                    
                    Index_R=Gaurd_length;Index_Fades=0;
                    for kk=1:Subslot_number+1
                        Tmp_Fades=Fades(:,Index_Fades+(1:Path_number));
                        Tmp_Noise = R(:,Index_R+(1:Pilot_length))-Tmp_Fades(:,1:Path_number)*Pilot_matrix;
                        Nv(kk)=sum(sum(abs(Tmp_Noise.*Tmp_Noise)))/Pilot_length/Antenna_number;                                    % Estimate of noise variance 
                        Index_R=Index_R+Subslot_length;
                        Index_Fades=Index_Fades+Path_number;
                    end
                    Tmp_Nv=sum(Nv)/(Subslot_number+1);
                    %        Tmn_Nv=0;
                    %    Receiver: Equalization in DFT domain
                    Index_R=Pilot_length; Index_Fades=0;R_EQ=[];
                    for kk=0:Subslot_number-1
                        Tmp_Fades=(FadesI(:,Index_Fades+(1:Path_number)));
                        RM=R(:,Index_R+(1:Subslot_length)); 
                       
                        RMC(nc,(sn*Subslot_number+kk)*Subslot_length+(1:Subslot_length))=sum(cyc_cov(RM,Tmp_Fades),1);
                        
                        h_half(nc,(sn*Subslot_number+kk)*Path_number+(1:Path_number))=sum(self_cov(Tmp_Fades),1);
                       
                        Index_Fades=Index_Fades+Path_number;
                        Index_R=Index_R+Subslot_length;
                    end
                end   
            end
            
            for nc=1:Carrier_number_used
                for sn=0:Slot_number-1
                    
                    for kk=0:Subslot_number-1
                     
                        Tmp_RMC=RMC(nc,(sn*Subslot_number+kk)*Subslot_length+(1:Subslot_length));
                    
                        Tmp_h_half=h_half(nc,(sn*Subslot_number+kk)*Path_number+(1:Path_number));
                        
                        R_DFT=fft(Tmp_RMC);
                        H_DFT=fft([Tmp_h_half zeros(1,Subslot_length-2*Path_number+1) conj(Tmp_h_half(end:-1:2))]);
                        X_DFT=R_DFT./((H_DFT+Noise_variance));
                        Tmp_R_EQ=ifft(X_DFT);
                        
                        % R_EQ(kk*SubslotData_length+(1:SubslotData_length))= Tmp_R_EQ(Gaurd_length+(1:SubslotData_length));
                        
                        rou = abs(mean((H_DFT)./(H_DFT+Noise_variance)));
                        
                        [Dem_signal(nc,(sn*Subslot_number+kk)*SubslotData_length*4+(1:SubslotData_length*4))] = Soft_Demod(Tmp_R_EQ(Gaurd_length+(1:SubslotData_length)), rou, 1, zeros(4,SubslotData_length), SubslotData_length);
                        %[Dem_signal(nc,(sn*Subslot_number+kk)*SubslotData_length*4+(1:SubslotData_length*4))] = SoftDeMod(Tmp_R_EQ(Gaurd_length+(1:SubslotData_length)), 4);
                        
                        % Tmp_R_EQ(1:Gaurd_length)=Gaurd_Pilot(Pilot_length+(1:Gaurd_length));
                        % Tmp_R_EQ(Gaurd_length+SubslotData_length+(1:Pilot_length))=Gaurd_Pilot(1:Pilot_length);
   
                     end
                    
                    %[Dem_signal(nc,sn*code_SlotL+(1:code_SlotL))] = -SoftDeMod(R_EQ, 4);

                end
            end
            
            
            Dem_signal(:,int_table)=Dem_signal;       
            Dem_signal_p=vec2mat(reshape(Dem_signal',1,code_L*packet_N),packet_N)';
            
            
            for np=1:packet_N
                
                [decoded, LLR_all] = TuDecLogMapNew(Dem_signal_p(np,:), puncture, nIter, int_table0, 1, 1, poly_g1, poly_g2);
                %[decoded] = TuDecSova(Dem_signal_p(np,:), puncture, nIter, int_table0, 1, 1, poly_g1, poly_g2);
                errors=errors+sum(abs(decoded(1:msg_L)-msg(np,1:msg_L)));
                
            end
            errors
            ber(log2(Antenna_number)+1,SNR-SNR1+1)=errors/k/msg_L/packet_N;
            ber(log2(Antenna_number)+1,1:SNR-SNR1+1)
            
            if (errors>300 & k>10) 
                break;
            end
        end
        
        if ber(log2(Antenna_number)+1,SNR-SNR1+1)<1.0*10^(-6)
            break;
        end
        
    end 
    save ber_16QAM200v_1 ber
end
semilogy(SNR1:SNR2,ber(:,1:SNR2-SNR1+1)')
grid
xlabel('SNR of Received Signal(in dB)')
ylabel('Bit Error Rate')
pause(0.2)
save ber_16QAM200v_1 ber

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -