📄 levenbergmarquardt.cpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/optimization/lmdif.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
namespace QuantLib {
LevenbergMarquardt::LevenbergMarquardt(Real epsfcn,
Real xtol,
Real gtol)
: info_(0), epsfcn_(epsfcn), xtol_(xtol), gtol_(gtol) {}
Integer LevenbergMarquardt::getInfo() const {
return info_;
}
EndCriteria::Type LevenbergMarquardt::minimize(Problem& P,
const EndCriteria& endCriteria) {
EndCriteria::Type ecType = EndCriteria::None;
P.reset();
Array x_ = P.currentValue();
ProblemData::instance().problem() = &P;
ProblemData::instance().initCostValues() = P.costFunction().values(x_);
int m = ProblemData::instance().initCostValues().size();
int n = x_.size();
boost::scoped_array<double> xx(new double[n]);
std::copy(x_.begin(), x_.end(), xx.get());
boost::scoped_array<double> fvec(new double[m]);
boost::scoped_array<double> diag(new double[n]);
int mode = 1;
double factor = 1;
int nprint = 0;
int info = 0;
int nfev =0;
boost::scoped_array<double> fjac(new double[m*n]);
int ldfjac = m;
boost::scoped_array<int> ipvt(new int[n]);
boost::scoped_array<double> qtf(new double[n]);
boost::scoped_array<double> wa1(new double[n]);
boost::scoped_array<double> wa2(new double[n]);
boost::scoped_array<double> wa3(new double[n]);
boost::scoped_array<double> wa4(new double[m]);
// call lmdif to minimize the sum of the squares of m functions
// in n variables by the Levenberg-Marquardt algorithm.
QuantLib::MINPACK::lmdif(m, n, xx.get(), fvec.get(),
static_cast<double>(endCriteria.functionEpsilon()),
static_cast<double>(xtol_),
static_cast<double>(gtol_),
static_cast<int>(endCriteria.maxIterations()),
static_cast<double>(epsfcn_),
diag.get(), mode, factor,
nprint, &info, &nfev, fjac.get(),
ldfjac, ipvt.get(), qtf.get(),
wa1.get(), wa2.get(), wa3.get(), wa4.get());
info_ = info;
// check requirements & endCriteria evaluation
QL_REQUIRE(info != 0, "MINPACK: improper input parameters");
//QL_REQUIRE(info != 6, "MINPACK: ftol is too small. no further "
// "reduction in the sum of squares "
// "is possible.");
if (info != 6) ecType = QuantLib::EndCriteria::StationaryFunctionValue;
//QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has "
// "reached or exceeded maxfev.");
endCriteria.checkMaxIterations(nfev, ecType);
QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further "
"improvement in the approximate "
"solution x is possible.");
QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is "
"orthogonal to the columns of the "
"jacobian to machine precision.");
// set problem
std::copy(xx.get(), xx.get()+n, x_.begin());
P.setCurrentValue(x_);
return ecType;
}
void LevenbergMarquardt::fcn(int, int n, double* x, double* fvec, int*) {
Array xt(n);
std::copy(x, x+n, xt.begin());
// constraint handling needs some improvement in the future:
// starting point should not be close to a constraint violation
if (ProblemData::instance().problem()->constraint().test(xt)) {
const Array& tmp = ProblemData::instance().problem()->values(xt);
std::copy(tmp.begin(), tmp.end(), fvec);
} else {
std::copy(ProblemData::instance().initCostValues().begin(),
ProblemData::instance().initCostValues().end(), fvec);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -