⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pseudosqrt.cpp

📁 有很多的函数库
💻 CPP
📖 第 1 页 / 共 2 页
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003, 2004, 2007 Ferdinando Ametrano
 Copyright (C) 2006 Yiping Chen
 Copyright (C) 2007 Neil Firth

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/matrixutilities/pseudosqrt.hpp>
#include <ql/math/matrixutilities/choleskydecomposition.hpp>
#include <ql/math/matrixutilities/symmetricschurdecomposition.hpp>
#include <ql/math/comparison.hpp>
#include <ql/math/optimization/conjugategradient.hpp>
#include <ql/math/optimization/problem.hpp>

namespace QuantLib {

    namespace {

        void checkSymmetry(const Matrix& matrix) {
            Size size = matrix.rows();
            QL_REQUIRE(size == matrix.columns(),
                       "non square matrix: " << size << " rows, " <<
                       matrix.columns() << " columns");
            for (Size i=0; i<size; ++i)
                for (Size j=0; j<i; ++j)
                    QL_REQUIRE(close(matrix[i][j], matrix[j][i]),
                               "non symmetric matrix: " <<
                               "[" << i << "][" << j << "]=" << matrix[i][j] <<
                               ", [" << j << "][" << i << "]=" << matrix[j][i]);
        }

        void normalizePseudoRoot(const Matrix& matrix,
                                 Matrix& pseudo) {
            Size size = matrix.rows();
            QL_REQUIRE(size == pseudo.rows(),
                       "matrix/pseudo mismatch: matrix rows are " << size <<
                       " while pseudo rows are " << pseudo.columns());
            Size pseudoCols = pseudo.columns();

            // row normalization
            for (Size i=0; i<size; ++i) {
                Real norm = 0.0;
                for (Size j=0; j<pseudoCols; ++j)
                    norm += pseudo[i][j]*pseudo[i][j];
                if (norm>0.0) {
                    Real normAdj = std::sqrt(matrix[i][i]/norm);
                    for (Size j=0; j<pseudoCols; ++j)
                        pseudo[i][j] *= normAdj;
                }
            }


        }

        //cost function for hypersphere and lower-diagonal algorithm
        class HypersphereCostFunction : public CostFunction {
          private:
            Size size_;
            bool lowerDiagonal_;
            Matrix targetMatrix_;
            Array targetVariance_;
            mutable Matrix currentRoot_, tempMatrix_, currentMatrix_;
          public:
            HypersphereCostFunction(const Matrix& targetMatrix,
                                    const Array& targetVariance,
                                    bool lowerDiagonal)
            : size_(targetMatrix.rows()), lowerDiagonal_(lowerDiagonal),
              targetMatrix_(targetMatrix), targetVariance_(targetVariance),
              currentRoot_(size_, size_), tempMatrix_(size_, size_),
              currentMatrix_(size_, size_) {}
            Disposable<Array> values(const Array&) const {
                QL_FAIL("values method not implemented");
            }
            Real value(const Array& x) const {
                Size i,j,k;
                std::fill(currentRoot_.begin(), currentRoot_.end(), 1.0);
                if (lowerDiagonal_) {
                    for (i=0; i<size_; i++) {
                        for (k=0; k<size_; k++) {
                            if (k>i) {
                                currentRoot_[i][k]=0;
                            } else {
                                for (j=0; j<=k; j++) {
                                    if (j == k && k!=i)
                                        currentRoot_[i][k] *=
                                            std::cos(x[i*(i-1)/2+j]);
                                    else if (j!=i)
                                        currentRoot_[i][k] *=
                                            std::sin(x[i*(i-1)/2+j]);
                                }
                            }
                        }
                    }
                } else {
                    for (i=0; i<size_; i++) {
                        for (k=0; k<size_; k++) {
                            for (j=0; j<=k; j++) {
                                if (j == k && k!=size_-1)
                                    currentRoot_[i][k] *=
                                        std::cos(x[j*size_+i]);
                                else if (j!=size_-1)
                                    currentRoot_[i][k] *=
                                        std::sin(x[j*size_+i]);
                            }
                        }
                    }
                }
                Real temp, error=0;
                tempMatrix_ = transpose(currentRoot_);
                currentMatrix_ = currentRoot_ * tempMatrix_;
                for (i=0;i<size_;i++) {
                    for (j=0;j<size_;j++) {
                        temp = currentMatrix_[i][j]*targetVariance_[i]
                          *targetVariance_[j]-targetMatrix_[i][j];
                        error += temp*temp;
                    }
                }
                return error;
            }
        };

        // Optimization function for hypersphere and lower-diagonal algorithm
        const Disposable <Matrix> hypersphereOptimize(
                                                const Matrix& targetMatrix,
                                                const Matrix& currentRoot,
                                                const bool lowerDiagonal) {
            Size i,j,k,size = targetMatrix.rows();
            Matrix result(currentRoot);
            Array variance(size, 0);
            for (i=0; i<size; i++){
                variance[i]=std::sqrt(targetMatrix[i][i]);
            }
            if (lowerDiagonal) {
                Matrix approxMatrix(result*transpose(result));
                result = CholeskyDecomposition(approxMatrix, true);
                for (i=0; i<size; i++) {
                    for (j=0; j<size; j++) {
                        result[i][j]/=std::sqrt(approxMatrix[i][i]);
                    }
                }
            } else {
                for (i=0; i<size; i++) {
                    for (j=0; j<size; j++) {
                        result[i][j]/=variance[i];
                    }
                }
            }

            ConjugateGradient optimize;
            EndCriteria endCriteria(100, 10, 1e-8, 1e-8, 1e-8);
            HypersphereCostFunction costFunction(targetMatrix, variance,
                                                 lowerDiagonal);
            NoConstraint constraint;

            // hypersphere vector optimization

            if (lowerDiagonal) {
                Array theta(size * (size-1)/2);
                const Real eps=1e-16;
                for (i=1; i<size; i++) {
                    for (j=0; j<i; j++) {
                        theta[i*(i-1)/2+j]=result[i][j];
                        if (theta[i*(i-1)/2+j]>1-eps)
                            theta[i*(i-1)/2+j]=1-eps;
                        if (theta[i*(i-1)/2+j]<-1+eps)
                            theta[i*(i-1)/2+j]=-1+eps;
                        for (k=0; k<j; k++) {
                            theta[i*(i-1)/2+j] /= std::sin(theta[i*(i-1)/2+k]);
                            if (theta[i*(i-1)/2+j]>1-eps)
                                theta[i*(i-1)/2+j]=1-eps;
                            if (theta[i*(i-1)/2+j]<-1+eps)
                                theta[i*(i-1)/2+j]=-1+eps;
                        }
                        theta[i*(i-1)/2+j] = std::acos(theta[i*(i-1)/2+j]);
                        if (j==i-1) {
                            if (result[i][i]<0)
                                theta[i*(i-1)/2+j]=-theta[i*(i-1)/2+j];
                        }
                    }
                }
                Problem p(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta = p.currentValue();
                std::fill(result.begin(),result.end(),1.0);
                for (i=0; i<size; i++) {
                    for (k=0; k<size; k++) {
                        if (k>i) {
                            result[i][k]=0;
                        } else {
                            for (j=0; j<=k; j++) {
                                if (j == k && k!=i)
                                    result[i][k] *=
                                        std::cos(theta[i*(i-1)/2+j]);
                                else if (j!=i)
                                    result[i][k] *=
                                        std::sin(theta[i*(i-1)/2+j]);
                            }
                        }
                    }
                }
            } else {
                Array theta(size * (size-1));
                const Real eps=1e-16;
                for (i=0; i<size; i++) {
                    for (j=0; j<size-1; j++) {
                        theta[j*size+i]=result[i][j];
                        if (theta[j*size+i]>1-eps)
                            theta[j*size+i]=1-eps;
                        if (theta[j*size+i]<-1+eps)
                            theta[j*size+i]=-1+eps;
                        for (k=0;k<j;k++) {
                            theta[j*size+i] /= std::sin(theta[k*size+i]);
                            if (theta[j*size+i]>1-eps)
                                theta[j*size+i]=1-eps;
                            if (theta[j*size+i]<-1+eps)
                                theta[j*size+i]=-1+eps;
                        }
                        theta[j*size+i] = std::acos(theta[j*size+i]);
                        if (j==size-2) {
                            if (result[i][j+1]<0)
                                theta[j*size+i]=-theta[j*size+i];
                        }
                    }
                }
                Problem p(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta=p.currentValue();
                std::fill(result.begin(),result.end(),1.0);
                for (i=0; i<size; i++) {
                    for (k=0; k<size; k++) {
                        for (j=0; j<=k; j++) {
                            if (j == k && k!=size-1)
                                result[i][k] *= std::cos(theta[j*size+i]);
                            else if (j!=size-1)
                                result[i][k] *= std::sin(theta[j*size+i]);
                        }
                    }
                }
            }

            for (i=0; i<size; i++) {
                for (j=0; j<size; j++) {
                    result[i][j]*=variance[i];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -