📄 convergencestatistics.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005 Gary Kennedy
Copyright (C) 2006 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file convergencestatistics.hpp
\brief statistics tool with risk measures
*/
#ifndef quantlib_convergence_statistics_hpp
#define quantlib_convergence_statistics_hpp
#include <ql/types.hpp>
#include <vector>
namespace QuantLib {
class DoublingConvergenceSteps {
public:
Size initialSamples() const { return 1; }
Size nextSamples(Size current) { return 2 * current + 1; }
};
//! statistics class with convergence table
/*! This class decorates another statistics class adding a
convergence table calculation. The table tracks the
convergence of the mean.
It is possible to specify the number of samples at which the
mean should be stored by mean of the second template
parameter; the default is to store \f$ 2^{n-1} \f$ samples at
the \f$ n \f$-th step. Any passed class must implement the
following interface:
\code
Size initialSamples() const;
Size nextSamples(Size currentSamples) const;
\endcode
as well as a copy constructor.
\test results are tested against known good values.
*/
template <class T, class U = DoublingConvergenceSteps>
class ConvergenceStatistics : public T {
public:
typedef typename T::value_type value_type;
typedef std::vector<std::pair<Size,value_type> > table_type;
ConvergenceStatistics(const T& stats,
const U& rule = U());
ConvergenceStatistics(const U& rule = U());
void add(const value_type& value, Real weight = 1.0);
template <class DataIterator>
void addSequence(DataIterator begin, DataIterator end) {
for (; begin != end; ++begin)
add(*begin);
}
template <class DataIterator, class WeightIterator>
void addSequence(DataIterator begin, DataIterator end,
WeightIterator wbegin) {
for (; begin != end; ++begin, ++wbegin)
add(*begin,*wbegin);
}
void reset();
const std::vector<std::pair<Size,value_type> >& convergenceTable()
const;
private:
table_type table_;
U samplingRule_;
Size nextSampleSize_;
};
// inline definitions
template <class T, class U>
ConvergenceStatistics<T,U>::ConvergenceStatistics(const T& stats,
const U& rule)
: T(stats), samplingRule_(rule) {
reset();
}
template <class T, class U>
ConvergenceStatistics<T,U>::ConvergenceStatistics(const U& rule)
: samplingRule_(rule) {
reset();
}
#ifndef __DOXYGEN__
template <class T, class U>
void ConvergenceStatistics<T,U>::add(
const typename ConvergenceStatistics<T,U>::value_type& value,
Real weight) {
T::add(value,weight);
if (this->samples() == nextSampleSize_) {
table_.push_back(std::make_pair(this->samples(),this->mean()));
nextSampleSize_ = samplingRule_.nextSamples(nextSampleSize_);
}
}
#endif
template <class T, class U>
void ConvergenceStatistics<T,U>::reset() {
T::reset();
nextSampleSize_ = samplingRule_.initialSamples();
table_.clear();
}
template <class T, class U>
const typename ConvergenceStatistics<T,U>::table_type&
ConvergenceStatistics<T,U>::convergenceTable() const {
return table_;
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -