📄 normaldistribution.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2002, 2003 Ferdinando Ametrano
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file normaldistribution.hpp
\brief normal, cumulative and inverse cumulative distributions
*/
#ifndef quantlib_normal_distribution_hpp
#define quantlib_normal_distribution_hpp
#include <ql/math/errorfunction.hpp>
#include <ql/errors.hpp>
namespace QuantLib {
//! Normal distribution function
/*! Given x, it returns its probability in a Gaussian normal distribution.
It provides the first derivative too.
\test the correctness of the returned value is tested by
checking it against numerical calculations. Cross-checks
are also performed against the
CumulativeNormalDistribution and InverseCumulativeNormal
classes.
*/
class NormalDistribution : public std::unary_function<Real,Real> {
public:
NormalDistribution(Real average = 0.0,
Real sigma = 1.0);
// function
Real operator()(Real x) const;
Real derivative(Real x) const;
private:
Real average_, sigma_, normalizationFactor_, denominator_,
derNormalizationFactor_;
};
typedef NormalDistribution GaussianDistribution;
//! Cumulative normal distribution function
/*! Given x it provides an approximation to the
integral of the gaussian normal distribution:
formula here ...
For this implementation see M. Abramowitz and I. Stegun,
Handbook of Mathematical Functions,
Dover Publications, New York (1972)
*/
class CumulativeNormalDistribution
: public std::unary_function<Real,Real> {
public:
CumulativeNormalDistribution(Real average = 0.0,
Real sigma = 1.0);
// function
Real operator()(Real x) const;
Real derivative(Real x) const;
private:
Real average_, sigma_;
NormalDistribution gaussian_;
ErrorFunction errorFunction_;
};
//! Inverse cumulative normal distribution function
/*! Given x between zero and one as
the integral value of a gaussian normal distribution
this class provides the value y such that
formula here ...
It use Acklam's approximation:
by Peter J. Acklam, University of Oslo, Statistics Division.
URL: http://home.online.no/~pjacklam/notes/invnorm/index.html
This class can also be used to generate a gaussian normal
distribution from a uniform distribution.
This is especially useful when a gaussian normal distribution
is generated from a low discrepancy uniform distribution:
in this case the traditional Box-Muller approach and its
variants would not preserve the sequence's low-discrepancy.
*/
class InverseCumulativeNormal
: public std::unary_function<Real,Real> {
public:
InverseCumulativeNormal(Real average = 0.0,
Real sigma = 1.0);
// function
Real operator()(Real x) const;
private:
#if defined(QL_PATCH_SOLARIS)
CumulativeNormalDistribution f_;
#else
static const CumulativeNormalDistribution f_;
#endif
Real average_, sigma_;
static const Real a1_;
static const Real a2_;
static const Real a3_;
static const Real a4_;
static const Real a5_;
static const Real a6_;
static const Real b1_;
static const Real b2_;
static const Real b3_;
static const Real b4_;
static const Real b5_;
static const Real c1_;
static const Real c2_;
static const Real c3_;
static const Real c4_;
static const Real c5_;
static const Real c6_;
static const Real d1_;
static const Real d2_;
static const Real d3_;
static const Real d4_;
static const Real x_low_;
static const Real x_high_;
};
// backward compatibility
typedef InverseCumulativeNormal InvCumulativeNormalDistribution;
//! Moro Inverse cumulative normal distribution class
/*! Given x between zero and one as
the integral value of a gaussian normal distribution
this class provides the value y such that
formula here ...
It uses Beasly and Springer approximation, with an improved
approximation for the tails. See Boris Moro,
"The Full Monte", 1995, Risk Magazine.
This class can also be used to generate a gaussian normal
distribution from a uniform distribution.
This is especially useful when a gaussian normal distribution
is generated from a low discrepancy uniform distribution:
in this case the traditional Box-Muller approach and its
variants would not preserve the sequence's low-discrepancy.
Peter J. Acklam's approximation is better and is available
as QuantLib::InverseCumulativeNormal
*/
class MoroInverseCumulativeNormal
: public std::unary_function<Real,Real> {
public:
MoroInverseCumulativeNormal(Real average = 0.0,
Real sigma = 1.0);
// function
Real operator()(Real x) const;
private:
Real average_, sigma_;
static const Real a0_;
static const Real a1_;
static const Real a2_;
static const Real a3_;
static const Real b0_;
static const Real b1_;
static const Real b2_;
static const Real b3_;
static const Real c0_;
static const Real c1_;
static const Real c2_;
static const Real c3_;
static const Real c4_;
static const Real c5_;
static const Real c6_;
static const Real c7_;
static const Real c8_;
};
// inline definitions
inline NormalDistribution::NormalDistribution(Real average,
Real sigma)
: average_(average), sigma_(sigma) {
QL_REQUIRE(sigma_>0.0,
"sigma must be greater than 0.0 ("
<< sigma_ << " not allowed)");
normalizationFactor_ = M_SQRT_2*M_1_SQRTPI/sigma_;
derNormalizationFactor_ = sigma_*sigma_;
denominator_ = 2.0*derNormalizationFactor_;
}
inline Real NormalDistribution::operator()(Real x) const {
Real deltax = x-average_;
Real exponent = -(deltax*deltax)/denominator_;
// debian alpha had some strange problem in the very-low range
return exponent <= -690.0 ? 0.0 : // exp(x) < 1.0e-300 anyway
normalizationFactor_*std::exp(exponent);
}
inline Real NormalDistribution::derivative(Real x) const {
return ((*this)(x) * (average_ - x)) / derNormalizationFactor_;
}
inline CumulativeNormalDistribution::CumulativeNormalDistribution(
Real average, Real sigma)
: average_(average), sigma_(sigma) {
QL_REQUIRE(sigma_>0.0,
"sigma must be greater than 0.0 ("
<< sigma_ << " not allowed)");
}
inline Real CumulativeNormalDistribution::derivative(Real x) const {
Real xn = (x - average_) / sigma_;
return gaussian_(xn) / sigma_;
}
inline InverseCumulativeNormal::InverseCumulativeNormal(
Real average, Real sigma)
: average_(average), sigma_(sigma) {
QL_REQUIRE(sigma_>0.0,
"sigma must be greater than 0.0 ("
<< sigma_ << " not allowed)");
}
inline MoroInverseCumulativeNormal::MoroInverseCumulativeNormal(
Real average, Real sigma)
: average_(average), sigma_(sigma) {
QL_REQUIRE(sigma_>0.0,
"sigma must be greater than 0.0 ("
<< sigma_ << " not allowed)");
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -