📄 randomizedlds.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004 Ferdinando Ametrano
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file randomizedlds.hpp
\brief Randomized low-discrepancy sequence
*/
#ifndef quantlib_randomized_lds_hpp
#define quantlib_randomized_lds_hpp
#include <ql/math/randomnumbers/randomsequencegenerator.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
namespace QuantLib {
//! Randomized (random shift) low-discrepancy sequence
/*! Random-shifts a uniform low-discrepancy sequence of dimension
\f$ N \f$ by adding (modulo 1 for each coordinate) a pseudo-random
uniform deviate in \f$ (0, 1)^N. \f$
It is used for implementing Randomized Quasi Monte Carlo.
The uniform low discrepancy sequence is supplied by LDS; the
uniform pseudo-random sequence is supplied by PRS.
Both class LDS and PRS must implement the following interface:
\code
LDS::sample_type LDS::nextSequence() const;
Size LDS::dimension() const;
\endcode
\pre LDS and PRS must have the same dimension \f$ N \f$
\warning Inverting LDS and PRS is possible, but it doesn't
make sense.
\todo implement the other randomization algorithms
\test correct initialization is tested.
*/
template <class LDS,
class PRS = RandomSequenceGenerator<MersenneTwisterUniformRng> >
class RandomizedLDS {
public:
typedef Sample<std::vector<Real> > sample_type;
RandomizedLDS(const LDS& ldsg,
const PRS& prsg);
RandomizedLDS(const LDS& ldsg);
RandomizedLDS(Size dimensionality,
BigNatural ldsSeed = 0,
BigNatural prsSeed = 0);
//! returns next sample using a given randomizing vector
const sample_type& nextSequence() const;
const sample_type& lastSequence() const {
return x;
}
/*! update the randomizing vector and re-initialize
the low discrepancy generator */
void nextRandomizer() {
randomizer_ = prsg_.nextSequence();
ldsg_ = pristineldsg_;
}
Size dimension() const {return dimension_;}
private:
LDS ldsg_, pristineldsg_;
PRS prsg_;
Size dimension_;
mutable sample_type x, randomizer_;
};
template <class LDS, class PRS>
RandomizedLDS<LDS, PRS>::RandomizedLDS(const LDS& ldsg, const PRS& prsg)
: ldsg_(ldsg), pristineldsg_(ldsg),
prsg_(prsg), dimension_(ldsg_.dimension()),
x(std::vector<Real> (dimension_), 1.0), randomizer_(std::vector<Real> (dimension_), 1.0) {
QL_REQUIRE(prsg_.dimension()==dimension_,
"generator mismatch: "
<< dimension_ << "-dim low discrepancy "
<< "and " << prsg_.dimension() << "-dim pseudo random")
randomizer_ = prsg_.nextSequence();
}
template <class LDS, class PRS>
RandomizedLDS<LDS, PRS>::RandomizedLDS(const LDS& ldsg)
: ldsg_(ldsg), pristineldsg_(ldsg),
prsg_(ldsg_.dimension()), dimension_(ldsg_.dimension()),
x(std::vector<Real> (dimension_), 1.0), randomizer_(std::vector<Real> (dimension_), 1.0) {
randomizer_ = prsg_.nextSequence();
}
template <class LDS, class PRS>
RandomizedLDS<LDS, PRS>::RandomizedLDS(Size dimensionality,
BigNatural ldsSeed,
BigNatural prsSeed)
: ldsg_(dimensionality, ldsSeed), pristineldsg_(dimensionality, ldsSeed),
prsg_(dimensionality, prsSeed), dimension_(dimensionality),
x(std::vector<Real> (dimensionality), 1.0), randomizer_(std::vector<Real> (dimensionality), 1.0) {
randomizer_ = prsg_.nextSequence();
}
template <class LDS, class PRS>
inline const typename RandomizedLDS<LDS, PRS>::sample_type&
RandomizedLDS<LDS, PRS>::nextSequence() const {
typename LDS::sample_type sample =
ldsg_.nextSequence();
x.weight = randomizer_.weight * sample.weight;
for (Size i = 0; i < dimension_; i++) {
x.value[i] = randomizer_.value[i] + sample.value[i];
if (x.value[i]>1.0)
x.value[i] -= 1.0;
}
return x;
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -