📄 g2.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2004 Mike Parker
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file g2.hpp
\brief Two-factor additive Gaussian Model G2++
*/
#ifndef quantlib_two_factor_models_g2_h
#define quantlib_two_factor_models_g2_h
#include <ql/models/shortrate/twofactormodel.hpp>
#include <ql/processes/ornsteinuhlenbeckprocess.hpp>
#include <ql/instruments/swaption.hpp>
namespace QuantLib {
//! Two-additive-factor gaussian model class.
/*! This class implements a two-additive-factor model defined by
\f[
dr_t = \varphi(t) + x_t + y_t
\f]
where \f$ x_t \f$ and \f$ y_t \f$ are defined by
\f[
dx_t = -a x_t dt + \sigma dW^1_t, x_0 = 0
\f]
\f[
dy_t = -b y_t dt + \sigma dW^2_t, y_0 = 0
\f]
and \f$ dW^1_t dW^2_t = \rho dt \f$.
\bug This class was not tested enough to guarantee
its functionality.
\ingroup shortrate
*/
class G2 : public TwoFactorModel,
public AffineModel,
public TermStructureConsistentModel {
public:
G2(const Handle<YieldTermStructure>& termStructure,
Real a = 0.1,
Real sigma = 0.01,
Real b = 0.1,
Real eta = 0.01,
Real rho = -0.75);
boost::shared_ptr<ShortRateDynamics> dynamics() const;
virtual Real discountBond(Time now,
Time maturity,
Array factors) const {
QL_REQUIRE(factors.size()>1,
"g2 model needs two factors to compute discount bond");
return discountBond(now, maturity, factors[0], factors[1]);
}
Real discountBond(Time, Time, Rate, Rate) const;
Real discountBondOption(Option::Type type,
Real strike,
Time maturity,
Time bondMaturity) const;
Real swaption(const Swaption::arguments& arguments,
Real range,
Size intervals) const;
DiscountFactor discount(Time t) const {
return termStructure()->discount(t);
}
protected:
void generateArguments();
Real A(Time t, Time T) const;
Real B(Real x, Time t) const;
private:
class Dynamics;
class FittingParameter;
Real sigmaP(Time t, Time s) const;
Parameter& a_;
Parameter& sigma_;
Parameter& b_;
Parameter& eta_;
Parameter& rho_;
Parameter phi_;
Real V(Time t) const;
Real a() const { return a_(0.0); }
Real sigma() const { return sigma_(0.0); }
Real b() const { return b_(0.0); }
Real eta() const { return eta_(0.0); }
Real rho() const { return rho_(0.0); }
class SwaptionPricingFunction;
friend class SwaptionPricingFunction;
};
class G2::Dynamics : public TwoFactorModel::ShortRateDynamics {
public:
Dynamics(const Parameter& fitting,
Real a,
Real sigma,
Real b,
Real eta,
Real rho)
: ShortRateDynamics(boost::shared_ptr<StochasticProcess1D>(
new OrnsteinUhlenbeckProcess(a, sigma)),
boost::shared_ptr<StochasticProcess1D>(
new OrnsteinUhlenbeckProcess(b, eta)),
rho),
fitting_(fitting) {}
virtual Rate shortRate(Time t,
Real x,
Real y) const {
return fitting_(t) + x + y;
}
private:
Parameter fitting_;
};
//! Analytical term-structure fitting parameter \f$ \varphi(t) \f$.
/*! \f$ \varphi(t) \f$ is analytically defined by
\f[
\varphi(t) = f(t) +
\frac{1}{2}(\frac{\sigma(1-e^{-at})}{a})^2 +
\frac{1}{2}(\frac{\eta(1-e^{-bt})}{b})^2 +
\rho\frac{\sigma(1-e^{-at})}{a}\frac{\eta(1-e^{-bt})}{b},
\f]
where \f$ f(t) \f$ is the instantaneous forward rate at \f$ t \f$.
*/
class G2::FittingParameter : public TermStructureFittingParameter {
private:
class Impl : public Parameter::Impl {
public:
Impl(const Handle<YieldTermStructure>& termStructure,
Real a,
Real sigma,
Real b,
Real eta,
Real rho)
: termStructure_(termStructure),
a_(a), sigma_(sigma), b_(b), eta_(eta), rho_(rho) {}
Real value(const Array&, Time t) const {
Rate forward = termStructure_->forwardRate(t, t,
Continuous,
NoFrequency);
Real temp1 = sigma_*(1.0-std::exp(-a_*t))/a_;
Real temp2 = eta_*(1.0-std::exp(-b_*t))/b_;
Real value = 0.5*temp1*temp1 + 0.5*temp2*temp2 +
rho_*temp1*temp2 + forward;
return value;
}
private:
Handle<YieldTermStructure> termStructure_;
Real a_, sigma_, b_, eta_, rho_;
};
public:
FittingParameter(const Handle<YieldTermStructure>& termStructure,
Real a,
Real sigma,
Real b,
Real eta,
Real rho)
: TermStructureFittingParameter(boost::shared_ptr<Parameter::Impl>(
new FittingParameter::Impl(termStructure, a, sigma,
b, eta, rho))) {}
};
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -