📄 blackkarasinski.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file blackkarasinski.hpp
\brief Black-Karasinski model
*/
#ifndef quantlib_black_karasinski_hpp
#define quantlib_black_karasinski_hpp
#include <ql/models/shortrate/onefactormodel.hpp>
#include <ql/processes/ornsteinuhlenbeckprocess.hpp>
namespace QuantLib {
//! Standard Black-Karasinski model class.
/*! This class implements the standard Black-Karasinski model defined by
\f[
d\ln r_t = (\theta(t) - \alpha \ln r_t)dt + \sigma dW_t,
\f]
where \f$ alpha \f$ and \f$ sigma \f$ are constants.
\ingroup shortrate
*/
class BlackKarasinski : public OneFactorModel,
public TermStructureConsistentModel {
public:
BlackKarasinski(const Handle<YieldTermStructure>& termStructure,
Real a = 0.1, Real sigma = 0.1);
boost::shared_ptr<ShortRateDynamics> dynamics() const {
QL_FAIL("no defined process for Black-Karasinski");
}
boost::shared_ptr<Lattice> tree(const TimeGrid& grid) const;
private:
class Dynamics;
class Helper;
Real a() const { return a_(0.0); }
Real sigma() const { return sigma_(0.0); }
Parameter& a_;
Parameter& sigma_;
};
//! Short-rate dynamics in the Black-Karasinski model
/*! The short-rate is here
\f[
r_t = e^{\varphi(t) + x_t}
\f]
where \f$ \varphi(t) \f$ is the deterministic time-dependent
parameter (which can not be determined analytically)
used for term-structure fitting and \f$ x_t \f$ is the state
variable following an Ornstein-Uhlenbeck process.
*/
class BlackKarasinski::Dynamics
: public BlackKarasinski::ShortRateDynamics {
public:
Dynamics(const Parameter& fitting, Real alpha, Real sigma)
: ShortRateDynamics(boost::shared_ptr<StochasticProcess1D>(
new OrnsteinUhlenbeckProcess(alpha, sigma))),
fitting_(fitting) {}
Real variable(Time t, Rate r) const {
return std::log(r) - fitting_(t);
}
Real shortRate(Time t, Real x) const {
return std::exp(x + fitting_(t));
}
private:
Parameter fitting_;
};
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -