📄 coxingersollross.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file coxingersollross.hpp
\brief Cox-Ingersoll-Ross model
*/
#ifndef quantlib_cox_ingersoll_ross_hpp
#define quantlib_cox_ingersoll_ross_hpp
#include <ql/models/shortrate/onefactormodel.hpp>
namespace QuantLib {
//! Cox-Ingersoll-Ross model class.
/*! This class implements the Cox-Ingersoll-Ross model defined by
\f[
dr_t = k(\theta - r_t)dt + \sqrt{r_t}\sigma dW_t .
\f]
\bug this class was not tested enough to guarantee
its functionality.
\ingroup shortrate
*/
class CoxIngersollRoss : public OneFactorAffineModel {
public:
CoxIngersollRoss(Rate r0 = 0.05,
Real theta = 0.1,
Real k = 0.1,
Real sigma = 0.1);
virtual Real discountBondOption(Option::Type type,
Real strike,
Time maturity,
Time bondMaturity) const;
virtual boost::shared_ptr<ShortRateDynamics> dynamics() const;
boost::shared_ptr<Lattice> tree(const TimeGrid& grid) const;
class Dynamics;
protected:
Real A(Time t, Time T) const;
Real B(Time t, Time T) const;
Real theta() const { return theta_(0.0); }
Real k() const { return k_(0.0); }
Real sigma() const { return sigma_(0.0); }
Real x0() const { return r0_(0.0); }
private:
class VolatilityConstraint;
class HelperProcess;
Parameter& theta_;
Parameter& k_;
Parameter& sigma_;
Parameter& r0_;
};
class CoxIngersollRoss::HelperProcess : public StochasticProcess1D {
public:
HelperProcess(Real theta, Real k, Real sigma, Real y0)
: y0_(y0), theta_(theta), k_(k), sigma_(sigma) {}
Real x0() const {
return y0_;
}
Real drift(Time, Real y) const {
return (0.5*theta_*k_ - 0.125*sigma_*sigma_)/y
- 0.5*k_*y;
}
Real diffusion(Time, Real) const {
return 0.5*sigma_;
}
private:
Real y0_, theta_, k_, sigma_;
};
//! %Dynamics of the short-rate under the Cox-Ingersoll-Ross model
/*! The state variable \f$ y_t \f$ will here be the square-root of the
short-rate. It satisfies the following stochastic equation
\f[
dy_t=\left[
(\frac{k\theta }{2}+\frac{\sigma ^2}{8})\frac{1}{y_t}-
\frac{k}{2}y_t \right] d_t+ \frac{\sigma }{2}dW_{t}
\f].
*/
class CoxIngersollRoss::Dynamics : public ShortRateDynamics {
public:
Dynamics(Real theta,
Real k,
Real sigma,
Real x0)
: ShortRateDynamics(boost::shared_ptr<StochasticProcess1D>(
new HelperProcess(theta, k, sigma, std::sqrt(x0)))) {}
virtual Real variable(Time, Rate r) const {
return std::sqrt(r);
}
virtual Real shortRate(Time, Real y) const {
return y*y;
}
};
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -