📄 onefactormodel.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file onefactormodel.hpp
\brief Abstract one-factor interest rate model class
*/
#ifndef quantlib_one_factor_model_hpp
#define quantlib_one_factor_model_hpp
#include <ql/stochasticprocess.hpp>
#include <ql/models/model.hpp>
#include <ql/methods/lattices/lattice1d.hpp>
#include <ql/methods/lattices/trinomialtree.hpp>
namespace QuantLib {
//! Single-factor short-rate model abstract class
/*! \ingroup shortrate */
class OneFactorModel : public ShortRateModel {
public:
OneFactorModel(Size nArguments);
virtual ~OneFactorModel() {}
class ShortRateDynamics;
class ShortRateTree;
//! returns the short-rate dynamics
virtual boost::shared_ptr<ShortRateDynamics> dynamics() const = 0;
//! Return by default a trinomial recombining tree
boost::shared_ptr<Lattice> tree(const TimeGrid& grid) const;
};
//! Base class describing the short-rate dynamics
class OneFactorModel::ShortRateDynamics {
public:
ShortRateDynamics(
const boost::shared_ptr<StochasticProcess1D>& process)
: process_(process) {}
virtual ~ShortRateDynamics() {};
//! Compute state variable from short rate
virtual Real variable(Time t, Rate r) const = 0;
//! Compute short rate from state variable
virtual Rate shortRate(Time t, Real variable) const = 0;
//! Returns the risk-neutral dynamics of the state variable
const boost::shared_ptr<StochasticProcess1D>& process() {
return process_;
}
private:
boost::shared_ptr<StochasticProcess1D> process_;
};
//! Recombining trinomial tree discretizing the state variable
class OneFactorModel::ShortRateTree
: public TreeLattice1D<OneFactorModel::ShortRateTree> {
public:
//! Plain tree build-up from short-rate dynamics
ShortRateTree(const boost::shared_ptr<TrinomialTree>& tree,
const boost::shared_ptr<ShortRateDynamics>& dynamics,
const TimeGrid& timeGrid);
//! Tree build-up + numerical fitting to term-structure
ShortRateTree(const boost::shared_ptr<TrinomialTree>& tree,
const boost::shared_ptr<ShortRateDynamics>& dynamics,
const boost::shared_ptr
<TermStructureFittingParameter::NumericalImpl>& phi,
const TimeGrid& timeGrid);
Size size(Size i) const {
return tree_->size(i);
}
DiscountFactor discount(Size i, Size index) const {
Real x = tree_->underlying(i, index);
Rate r = dynamics_->shortRate(timeGrid()[i], x);
return std::exp(-r*timeGrid().dt(i));
}
Real underlying(Size i, Size index) const {
return tree_->underlying(i, index);
}
Size descendant(Size i, Size index, Size branch) const {
return tree_->descendant(i, index, branch);
}
Real probability(Size i, Size index, Size branch) const {
return tree_->probability(i, index, branch);
}
private:
boost::shared_ptr<TrinomialTree> tree_;
boost::shared_ptr<ShortRateDynamics> dynamics_;
class Helper;
};
//! Single-factor affine base class
/*! Single-factor models with an analytical formula for discount bonds
should inherit from this class. They must then implement the
functions \f$ A(t,T) \f$ and \f$ B(t,T) \f$ such that
\f[
P(t, T, r_t) = A(t,T)e^{ -B(t,T) r_t}.
\f]
\ingroup shortrate
*/
class OneFactorAffineModel : public OneFactorModel,
public AffineModel {
public:
OneFactorAffineModel(Size nArguments)
: OneFactorModel(nArguments) {}
virtual Real discountBond(Time now,
Time maturity,
Array factors) const {
return discountBond(now, maturity, factors[0]);
}
Real discountBond(Time now, Time maturity, Rate rate) const {
return A(now, maturity)*std::exp(-B(now, maturity)*rate);
}
DiscountFactor discount(Time t) const {
Real x0 = dynamics()->process()->x0();
Rate r0 = dynamics()->shortRate(0.0, x0);
return discountBond(0.0, t, r0);
}
protected:
virtual Real A(Time t, Time T) const = 0;
virtual Real B(Time t, Time T) const = 0;
};
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -