📄 mcdiscretearithmeticaso.cpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/legacy/pricers/mcdiscretearithmeticaso.hpp>
#include <ql/legacy/pricers/discretegeometricaso.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/quotes/simplequote.hpp>
namespace QuantLib {
namespace {
class ArithmeticASOPathPricer : public PathPricer<Path> {
public:
ArithmeticASOPathPricer(Option::Type type,
DiscountFactor discount)
: type_(type), discount_(discount) {}
Real operator()(const Path& path) const {
Size n = path.length();
QL_REQUIRE(n > 1, "the path cannot be empty");
Real averageStrike;
if (path.timeGrid().mandatoryTimes()[0]==0.0) {
// include initial fixing
averageStrike =
std::accumulate(path.begin(),path.end(),0.0)/n;
} else {
averageStrike =
std::accumulate(path.begin()+1,path.end(),0.0)/(n-1);
}
return discount_
* PlainVanillaPayoff(type_, averageStrike)(path.back());
}
private:
Option::Type type_;
DiscountFactor discount_;
};
class GeometricASOPathPricer : public PathPricer<Path> {
public:
GeometricASOPathPricer(Option::Type type,
DiscountFactor discount)
: type_(type), discount_(discount) {}
Real operator()(const Path& path) const {
Size n = path.length();
QL_REQUIRE(n>1, "the path cannot be empty");
Size fixings = n-1;
if (path.timeGrid().mandatoryTimes()[0]==0.0)
fixings = n;
Real averageStrike = 1.0;
Real maxValue = QL_MAX_REAL;
Real product = 1.0;
if (path.timeGrid().mandatoryTimes()[0]==0.0)
product = path.front();
for (Size i=1; i<n; i++) {
Real value = path[i];
if (product < maxValue/value) {
product *= value;
} else {
averageStrike *= std::pow(product, 1.0/fixings);
product = value;
}
}
averageStrike *= std::pow(product, 1.0/fixings);
return discount_
* PlainVanillaPayoff(type_, averageStrike)(path.back());
}
private:
Option::Type type_;
DiscountFactor discount_;
};
}
McDiscreteArithmeticASO::McDiscreteArithmeticASO(
Option::Type type,
Real underlying,
const Handle<YieldTermStructure>& dividendYield,
const Handle<YieldTermStructure>& riskFreeRate,
const Handle<BlackVolTermStructure>& volatility,
const std::vector<Time>& times,
bool controlVariate,
BigNatural seed) {
QL_REQUIRE(times.size() >= 2,
"you must have at least 2 time-steps");
// initialize the path generator
Handle<Quote> u(boost::shared_ptr<Quote>(new SimpleQuote(underlying)));
boost::shared_ptr<StochasticProcess1D> diffusion(
new GeneralizedBlackScholesProcess(u,
dividendYield,
riskFreeRate,
volatility));
TimeGrid grid(times.begin(), times.end());
PseudoRandom::rsg_type rsg =
PseudoRandom::make_sequence_generator(grid.size()-1,seed);
bool brownianBridge = false;
typedef SingleVariate<PseudoRandom>::path_generator_type generator;
boost::shared_ptr<generator> pathGenerator(new
generator(diffusion, grid, rsg, brownianBridge));
// initialize the path pricer
DiscountFactor discount = riskFreeRate->discount(times.back());
boost::shared_ptr<PathPricer<Path> > spPricer(
new ArithmeticASOPathPricer(type, discount));
if (controlVariate) {
boost::shared_ptr<PathPricer<Path> > controlVariateSpPricer(
new GeometricASOPathPricer(type, discount));
// Not sure whether this work when curves are not flat...
Time exercise = times.back();
Rate r = riskFreeRate->zeroRate(exercise,Continuous,NoFrequency);
Rate q = dividendYield->zeroRate(exercise,Continuous,NoFrequency);
Volatility sigma = volatility->blackVol(exercise,underlying);
Real controlVariatePrice = DiscreteGeometricASO(type,
underlying, q, r, times, sigma).value();
// initialize the one-dimensional Monte Carlo
mcModel_ = boost::shared_ptr<MonteCarloModel<SingleVariate,
PseudoRandom> > (
new MonteCarloModel<SingleVariate,PseudoRandom>(
pathGenerator, spPricer, Statistics(), false,
controlVariateSpPricer, controlVariatePrice));
} else {
// initialize the one-dimensional Monte Carlo
mcModel_ = boost::shared_ptr<MonteCarloModel<SingleVariate,
PseudoRandom> > (
new MonteCarloModel<SingleVariate,PseudoRandom>(
pathGenerator, spPricer, Statistics(), false));
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -