📄 abcd.hpp
字号:
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006, 2007 Ferdinando Ametrano
Copyright (C) 2006 Cristina Duminuco
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_abcd_hpp
#define quantlib_abcd_hpp
#include <ql/math/optimization/endcriteria.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <ql/math/optimization/constraint.hpp>
namespace QuantLib {
inline void validateAbcdParameters(Real a, Real, Real c, Real d) {
QL_REQUIRE(a+d>=0,
"a+d (" << a << ", " << d <<") must be non negative");
QL_REQUIRE(c>=0,
"c (" << c << ") must be non negative");
QL_REQUIRE(d>=0,
"d (" << d << ") must be non negative");
}
//! %Abcd functional form for instantaneous volatility
/*! \f[ f(T-t) = [ a + b(T-t) ] e^{-c(T-t)} + d \f]
following Rebonato's notation.
*/
struct AbcdFunction : public std::unary_function<Real, Real> {
Real a_, b_, c_, d_;
AbcdFunction(Real a=-0.06, Real b=0.17, Real c=0.54, Real d=0.17);
//! volatility function value at time u: \f[ f(u) \f]
Real operator()(Time u) const;
//! time at which the volatility function reaches maximum (if any)
Real maximumLocation() const;
//! maximum value of the volatility function
Real maximumValue() const;
//! volatility function value at time 0: \f[ f(0) \f]
Real shortTermValue() const { return a_+d_; }
//! volatility function value at time +inf: \f[ f(\inf) \f]
Real longTermValue() const { return d_; }
/*! instantaneous covariance function at time t between T-fixing and
S-fixing rates \f[ f(T-t)f(S-t) \f]
*/
Real covariance(Time t, Time T, Time S) const;
/*! integral of the instantaneous covariance function between
time t1 and t2 for T-fixing and S-fixing rates
\f[ \int_{t1}^{t2} f(T-t)f(S-t)dt \f]
*/
Real covariance(Time t1, Time t2, Time T, Time S) const;
/*! indefinite integral of the instantaneous covariance function at
time t between T-fixing and S-fixing rates
\f[ \int f(T-t)f(S-t)dt \f]
*/
Real primitive(Time t, Time T, Time S) const;
/*! volatility in [tMin,tMax] of T-fixing rate:
\f[ \sqrt{ \int_{tMin}^{tMax} f^2(T-u)du }\f]
*/
Real volatility(Time T, Time tMax, Time tMin) const;
/*! variance in [tMin,tMax] of T-fixing rate:
\f[ \int_{tMin}^{tMax} f^2(T-u)du \f]
*/
Real variance(Time T, Time tMax, Time tMin) const;
};
inline AbcdFunction::AbcdFunction(Real a, Real b, Real c, Real d)
: a_(a), b_(b), c_(c), d_(d) {
validateAbcdParameters(a, b, c, d);
}
inline Real AbcdFunction::operator()(Time u) const {
return u<0 ? 0.0 : (a_ + b_*u)*std::exp(-c_*u) + d_;
}
inline Real AbcdFunction::maximumLocation() const {
return (b_>0.0 ? (b_-c_*a_)/(c_*b_) : 0.0);
}
inline Real AbcdFunction::maximumValue() const {
return (b_>0.0 ?
b_/c_*std::exp(-1.0 +c_*a_/b_)+d_ :
shortTermValue());
}
inline Real AbcdFunction::covariance(Time t, Time T, Time S) const {
return (*this)(T-t) * (*this)(S-t);
}
inline Real AbcdFunction::primitive(Time t, Time T, Time S) const {
if (T<t || S<t) return 0.0;
Real k1=std::exp(c_*t), k2=std::exp(c_*S), k3=std::exp(c_*T);
return (b_*b_*(-1 - 2*c_*c_*S*T - c_*(S + T)
+ k1*k1*(1 + c_*(S + T - 2*t) + 2*c_*c_*(S - t)*(T - t)))
+ 2*c_*c_*(2*d_*a_*(k2 + k3)*(k1 - 1)
+a_*a_*(k1*k1 - 1)+2*c_*d_*d_*k2*k3*t)
+ 2*b_*c_*(a_*(-1 - c_*(S + T) + k1*k1*(1 + c_*(S + T - 2*t)))
-2*d_*(k3*(1 + c_*S) + k2*(1 + c_*T)
- k1*k3*(1 + c_*(S - t))
- k1*k2*(1 + c_*(T - t)))
)
) / (4*c_*c_*c_*k2*k3);
}
inline Real AbcdFunction::covariance(Time t1, Time t2, Time T, Time S)
const {
QL_REQUIRE(t1<=t2,
"integrations bounds (" << t1 <<
"," << t2 << ") are in reverse order");
Time cutOff = std::min(S,T);
if (t1>=cutOff) {
return 0.0;
} else {
cutOff = std::min(t2, cutOff);
return primitive(cutOff, T, S) - primitive(t1, T, S);
}
}
inline Real AbcdFunction::volatility(Time T, Time tMax, Time tMin) const {
if (tMax==tMin)
return std::sqrt(covariance(tMax, T, T));
QL_REQUIRE(tMax>tMin, "tMax must be > tMin");
return std::sqrt(variance(tMin, tMax, T)/(tMax-tMin));
}
inline Real AbcdFunction::variance(Time T, Time tMax, Time tMin) const {
return covariance(tMin, tMax, T, T);
}
// Helper class used by unit tests
struct AbcdSquared : public std::unary_function<Real,Real> {
boost::shared_ptr<AbcdFunction> abcdFunction_;
Time T_, S_;
AbcdSquared(Real a, Real b, Real c, Real d, Time T, Time S)
: abcdFunction_(new AbcdFunction(a,b,c,d)), T_(T), S_(S) {}
Real operator()(Time t) const {
return abcdFunction_->covariance(t, T_, S_);
}
};
class OptimizationMethod;
//! %Abcd functional form for instantaneous volatility
/*!
\f[
f(T-t) = [ a + b(T-t) ] e^{-c(T-t)} + d
\f]
following Rebonato notation.
*/
class Abcd : public std::unary_function<Real,Real> {
public:
Abcd(Real a = -0.06,
Real b = 0.17,
Real c = 0.54,
Real d = 0.17,
bool aIsFixed = false,
bool bIsFixed = false,
bool cIsFixed = false,
bool dIsFixed = false);
//! instantaneous volatility at time to maturity u: \f[ f(u) \f]
Real operator()(Time u) const;
Real a() const { return a_; }
Real b() const { return b_; }
Real c() const { return c_; }
Real d() const { return d_; }
/*! instantaneous volatility at time t of the T-fixing rate:
\f[ f(T-t) \f]
*/
Real instantaneousVolatility(Time t, Time T) const;
/*! instantaneous variance at time t of T-fixing rate:
\f[ f(T-t)f(T-t) \f]
*/
Real instantaneousVariance(Time t, Time T) const;
/*! instantaneous covariance at time t between T and S fixing rates:
\f[ f(T-u)f(S-u) \f]
*/
Real instantaneousCovariance(Time u, Time T, Time S) const;
/*! volatility in [tMin,tMax] of T-fixing rate:
\f[ \sqrt{ \int_{tMin}^{tMax} f^2(T-u)du }\f]
*/
Real volatility(Time tMin, Time tMax, Time T) const;
/*! variance in [tMin,tMax] of T-fixing rate:
\f[ \int_{tMin}^{tMax} f^2(T-u)du \f]
*/
Real variance(Time tMin, Time tMax, Time T) const;
/*! covariance in [tMin,tMax] between T and S fixing rates:
\f[ \int_{tMin}^{tMax} f(T-u)f(S-u)du \f]
*/
Real covariance(Time tMin, Time tMax, Time T, Time S) const;
//! instantaneous volatility when time to maturity = 0.0
Real shortTermVolatility() const;
//! instantaneous volatility when time to maturity = +inf
Real longTermVolatility() const;
//! time to maturity at which the instantaneous volatility reaches maximum (if any)
Real maximumLocation() const;
//! maximum of the instantaneous volatility
Real maximumVolatility() const;
//! adjustment factors needed to match Black vols
std::vector<Real> k(const std::vector<Real>& blackVols,
const std::vector<Real>::const_iterator& t) const;
//! volatility error
Real error(const std::vector<Real>& blackVols,
const std::vector<Real>::const_iterator& t) const;
//! volatility max error
Real maxError(const std::vector<Real>& blackVols,
const std::vector<Real>::const_iterator& t) const;
//! calibration
EndCriteria::Type calibration(
const std::vector<Real>& blackVols,
const std::vector<Real>::const_iterator& t,
const boost::shared_ptr<EndCriteria>& endCriteria
= boost::shared_ptr<EndCriteria>(),
const boost::shared_ptr<OptimizationMethod>& method
= boost::shared_ptr<OptimizationMethod>());
private:
//! indefinite integral \f[ \int f(T-t)f(S-t)dt \f]
Real primitive(Time u, Time T, Time S) const;
//! optimization constraints
class AbcdConstraint : public Constraint {
private:
class Impl : public Constraint::Impl {
public:
bool test(const Array& params) const {
return params[0] + params[3] > 0.0 // a + d
&& params[2] > 0.0 // c
&& params[3] > 0.0; // d
}
};
public:
AbcdConstraint()
: Constraint(boost::shared_ptr<Constraint::Impl>(new Impl)) {}
};
//! function to minimize
class AbcdCostFunction;
friend class AbcdCostFunction;
class AbcdCostFunction : public CostFunction {
public:
AbcdCostFunction(Abcd* abcd,
const std::vector<Real>& blackVols,
const std::vector<Real>::const_iterator& t)
: abcd_(abcd), blackVols_(blackVols), t_(t) {}
Real value(const Array& x) const {
if (!abcd_->aIsFixed_) abcd_->a_ = x[0];
if (!abcd_->bIsFixed_) abcd_->b_ = x[1];
if (!abcd_->cIsFixed_) abcd_->c_ = x[2];
if (!abcd_->dIsFixed_) abcd_->d_ = x[3];
return abcd_->error(blackVols_, t_);
}
Disposable<Array> values(const Array&) const {
QL_FAIL("values method not implemented");
}
private:
Abcd* abcd_;
std::vector<Real> blackVols_;
std::vector<Real>::const_iterator t_;
};
//! Parameters
Real a_, b_, c_, d_;
bool aIsFixed_, bIsFixed_, cIsFixed_, dIsFixed_;
};
// inline
inline Real Abcd::shortTermVolatility() const {
return a_+d_;
}
inline Real Abcd::longTermVolatility() const {
return d_;
}
inline Real Abcd::maximumLocation() const {
return (b_>0.0 ? (b_-c_*a_)/(c_*b_) : 0.0);
}
inline Real Abcd::maximumVolatility() const {
return (b_>0.0 ?
b_/c_*std::exp(-1.0 +c_*a_/b_)+d_ :
shortTermVolatility());
}
inline Real Abcd::instantaneousVolatility(Time u, Time T) const {
return std::sqrt(instantaneousVariance(u, T));
}
inline Real Abcd::instantaneousVariance(Time u, Time T) const {
return instantaneousCovariance(u, T, T);
}
inline Real Abcd::volatility(Time tMin, Time tMax, Time T) const {
if (tMax==tMin)
return instantaneousVolatility(tMax, T);
QL_REQUIRE(tMax>tMin, "tMax must be > tMin");
return std::sqrt(variance(tMin, tMax, T)/(tMax-tMin));
}
inline Real Abcd::variance(Time tMin, Time tMax, Time T) const {
return covariance(tMin, tMax, T, T);
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -