⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ecdsa.java

📁 在ECC椭圆曲线上的一种加密算法
💻 JAVA
字号:
/** * jBorZoi - An Elliptic Curve Cryptography Library * * Copyright (C) 2003 Dragongate Technologies Ltd. *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.   */package com.dragongate_technologies.borZoi;import java.math.BigInteger;import java.security.MessageDigest;import java.security.NoSuchAlgorithmException;import com.dragongate_technologies.borZoi.internal.*;/** * The ECDSA (Elliptic Curve Digital Signature Algorithm) as  * specified in ANSI X9.62, FIPS 186-2 and IEEE P1363. * <P> * ECDSA (the Elliptic Curve Digital Signature Algorithm) is used  * to generate a digital signature of a message digest or hash.  * The signature consists of c and d which are two large integers. * This signature algorithm is described in more detail in  * sections 7.2.7 and 7.2.8 of the IEEE P1363 standard. * @author <a href="http://www.dragongate-technologies.com">Dragongate Technologies Ltd.</a> * @version 0.90 */public class ECDSA {	public BigInteger c;	public BigInteger d;	private ECPrivKey s;	private ECPubKey W;	private int f[];	private MessageDigest sha;	private BigInteger[] ECSP_DSA() {		BigInteger sig[] = { BigInteger.valueOf(0), BigInteger.valueOf(0)};		ECPrivKey u;		ECPubKey V;		while ((sig[0].compareTo(BigInteger.valueOf(0)) == 0)			|| (sig[1].compareTo(BigInteger.valueOf(0)) == 0)) {			u = new ECPrivKey(s.dp);			V = new ECPubKey(u);			sig[0] = Utils.OS2IP(Utils.FE2OSP(V.W.x)).mod(s.dp.r);			BigInteger uinv = u.s.modInverse(s.dp.r);			BigInteger temp =				Utils.OS2IP(f).add(s.s.multiply(sig[0]).mod(s.dp.r)).mod(s.dp.r);			sig[1] = (uinv.multiply(temp)).mod(s.dp.r);		}		return sig;	}	private boolean ECVP_DSA() {		if (!(((BigInteger.valueOf(1).compareTo(c) <= 0)			& (c.compareTo(W.dp.r) < 0))			& ((BigInteger.valueOf(1).compareTo(d) <= 0)				& (d.compareTo(W.dp.r) < 0))))			return false;		BigInteger h = d.modInverse(W.dp.r);		BigInteger h1 = Utils.OS2IP(f).multiply(h).mod(W.dp.r);		BigInteger h2 = c.multiply(h).mod(W.dp.r);		ECPoint P = W.dp.E.add(W.dp.E.mul(h1, W.dp.G), W.dp.E.mul(h2, W.W));		if (P.isZero())			return false;		BigInteger i = Utils.OS2IP(Utils.FE2OSP(P.x)).mod(W.dp.r);		if (c.compareTo(i) == 0)			return true;		else			return false;	}	public ECDSA() {	}	public ECDSA(BigInteger c, BigInteger d) {		this.c = c;		this.d = d;	}	public void initSignature(ECPrivKey s) throws NoSuchAlgorithmException {		sha = MessageDigest.getInstance("SHA");		this.s = (ECPrivKey) s.clone();	}	public void initVerify(ECPubKey W) throws NoSuchAlgorithmException {		sha = MessageDigest.getInstance("SHA");		this.W = (ECPubKey) W.clone();	}	public void update(byte[] data) {		sha.update(data);	}	public void sign() {		f = Utils.revIntArray(Utils.toIntArray(sha.digest()));		BigInteger[] sig = ECSP_DSA();		c = sig[0];		d = sig[1];	}	public boolean verify() {		f = Utils.revIntArray(Utils.toIntArray(sha.digest()));		return ECVP_DSA();	}	public String toString() {		String str = new String("c:").concat(c.toString(16)).concat("\n");		str = str.concat("d:").concat(d.toString(16)).concat("\n");		return str;	}	protected Object clone() {		return new ECDSA();	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -