📄 nnm.nc
字号:
"adc r8, r19 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T42: mul r13, r15 \n\t" "clr r24 \n\t" "lsl r0 \n\t" "rol r1 \n\t" "rol r24 \n\t" "add r4, r0 \n\t" "adc r5, r1 \n\t" "adc r6, r24 \n\t" "brcc EQ_SQR_T43 \n\t" "adc r7, r19 \n\t" "adc r8, r19 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T43: mul r14, r15 \n\t" "clr r24 \n\t" "lsl r0 \n\t" "rol r1 \n\t" "rol r24 \n\t" "add r5, r0 \n\t" "adc r6, r1 \n\t" "adc r7, r24 \n\t" "brcc EQ_SQR_T44 \n\t" "adc r8, r19 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T44: ld r15, Y+ \n\t" //load c[j*d+1] "mul r12, r15 \n\t" //t=1 "add r4, r0 \n\t" "adc r5, r1 \n\t" "adc r6, r19 \n\t" "brcc EQ_SQR_T52 \n\t" "adc r7, r19 \n\t" "adc r8, r19 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T52: mul r13, r15 \n\t" //t=2 "clr r24 \n\t" "lsl r0 \n\t" "rol r1 \n\t" "rol r24 \n\t" "add r5, r0 \n\t" "adc r6, r1 \n\t" "adc r7, r24 \n\t" "brcc EQ_SQR_T53 \n\t" "adc r8, r19 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T53: mul r14, r15 \n\t" //t=3 "clr r24 \n\t" "lsl r0 \n\t" "rol r1 \n\t" "rol r24 \n\t" "add r6, r0 \n\t" "adc r7, r1 \n\t" "adc r8, r24 \n\t" "brcc EQ_SQR_T54 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T54: ld r15, Y+ \n\t" //load c[j*d+2] "mul r13, r15 \n\t" //t=2 "add r6, r0 \n\t" "adc r7, r1 \n\t" "brcc EQ_SQR_T63 \n\t" "adc r8, r19 \n\t" "adc r9, r19 \n\t" "adc r10, r19 \n\t" "EQ_SQR_T63: mul r14, r15 \n\t" //t=3 "clr r24 \n\t" "lsl r0 \n\t" "rol r1 \n\t" "rol r24 \n\t" "add r7, r0 \n\t" "adc r8, r1 \n\t" "adc r9, r24 \n\t" "adc r10, r19 \n\t" "ld r15, Y+ \n\t" //load c[j*d+3] "mul r14, r15 \n\t" //t=3 "add r8, r0 \n\t" "adc r9, r1 \n\t" "adc r10, r19 \n\t" "SQR_LOOP4_EXIT: st Z+, r2 \n\t" //a[i*d] = r2 "st Z+, r3 \n\t" "st Z+, r4 \n\t" "st Z+, r5 \n\t" "movw r2, r6 \n\t" //can be speed up use movw "movw r4, r8 \n\t" "mov r6, r10 \n\t" //can be remove "clr r7 \n\t" "clr r8 \n\t" "clr r9 \n\t" "clr r10 \n\t" "mov r0, %2 \n\t" "lsl r0 \n\t" "cp r16, r0 \n\t" "breq SQR_LOOP3_EXIT \n\t" "inc r16 \n\t" "jmp SQR_LOOP3 \n\t" "SQR_LOOP3_EXIT: st Z+, r2 \n\t" "st Z+, r3 \n\t" "st Z+, r4 \n\t" "st Z+, r5 \n\t" "pop r29 \n\t" "pop r28 \n\t" "pop r1 \n\t" //"pop r0 \n\t" : :"z"(a),"a"(b),"r"(n_d) :"r0","r1","r2","r3","r4","r5","r6","r7","r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r19","r24","r25","r26","r27","r28","r29" );#endif //end of MICA#ifdef TELOSB //should implement in assembly NN_DIGIT t[2*MAX_NN_DIGITS]; NN_UINT bDigits, i; NN_AssignZero (t, 2 * digits); bDigits = NN_Digits (b, digits); for (i = 0; i < bDigits; i++) t[i+bDigits] += NN_AddDigitMult (&t[i], &t[i], b[i], b, bDigits); NN_Assign (a, t, 2 * digits);#endif //end of TELOSB#else NN_DIGIT t[2*MAX_NN_DIGITS]; NN_UINT bDigits, i; NN_AssignZero (t, 2 * digits); bDigits = NN_Digits (b, digits); for (i = 0; i < bDigits; i++) t[i+bDigits] += NN_AddDigitMult (&t[i], &t[i], b[i], b, bDigits); NN_Assign (a, t, 2 * digits);#endif } /* Computes a = b * 2^c (i.e., shifts left c bits), returning carry. a, b can be same Lengths: a[digits], b[digits]. Requires c < NN_DIGIT_BITS. */ NN_DIGIT NN_LShift (NN_DIGIT *a, NN_DIGIT *b, NN_UINT c, NN_UINT digits) { NN_DIGIT bi, carry; NN_UINT i, t; if (c >= NN_DIGIT_BITS) return (0); t = NN_DIGIT_BITS - c; carry = 0; for (i = 0; i < digits; i++) { bi = b[i]; a[i] = (bi << c) | carry; carry = c ? (bi >> t) : 0; } return (carry); } /* Computes a = b div 2^c (i.e., shifts right c bits), returning carry. a, b can be same Lengths: a[digits], b[digits]. Requires: c < NN_DIGIT_BITS. */ NN_DIGIT NN_RShift (NN_DIGIT *a, NN_DIGIT *b, NN_UINT c, NN_UINT digits) { NN_DIGIT bi, carry; int i; NN_UINT t; if (c >= NN_DIGIT_BITS) return (0); t = NN_DIGIT_BITS - c; carry = 0; for (i = digits - 1; i >= 0; i--) { bi = b[i]; a[i] = (bi >> c) | carry; carry = c ? (bi << t) : 0; } return (carry); } /* Computes a = c div d and b = c mod d. a, c, d can be same b, c, d can be same Lengths: a[cDigits], b[dDigits], c[cDigits], d[dDigits]. Assumes d > 0, cDigits < 2 * MAX_NN_DIGITS, dDigits < MAX_NN_DIGITS. */ void NN_Div (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT *c, NN_UINT cDigits, NN_DIGIT *d, NN_UINT dDigits) { NN_DIGIT ai, cc[2*MAX_NN_DIGITS+1], dd[MAX_NN_DIGITS], t; int i; int ddDigits, shift; ddDigits = NN_Digits (d, dDigits); if (ddDigits == 0) return; /* Normalize operands. */ shift = NN_DIGIT_BITS - NN_DigitBits (d[ddDigits-1]); NN_AssignZero (cc, ddDigits); cc[cDigits] = NN_LShift (cc, c, shift, cDigits); NN_LShift (dd, d, shift, ddDigits); t = dd[ddDigits-1]; if (a != NULL) NN_AssignZero (a, cDigits); for (i = cDigits-ddDigits; i >= 0; i--) { /* Underestimate quotient digit and subtract. */ if (t == MAX_NN_DIGIT) ai = cc[i+ddDigits]; else NN_DigitDiv (&ai, &cc[i+ddDigits-1], t + 1); cc[i+ddDigits] -= NN_SubDigitMult (&cc[i], &cc[i], ai, dd, ddDigits); /* Correct estimate. */ while (cc[i+ddDigits] || (NN_Cmp (&cc[i], dd, ddDigits) >= 0)) { ai++; cc[i+ddDigits] -= NN_Sub (&cc[i], &cc[i], dd, ddDigits); } if (a != NULL) a[i] = ai; } /* Restore result. */ NN_AssignZero (b, dDigits); NN_RShift (b, cc, shift, ddDigits); } /* Computes a = b mod c. Lengths: a[cDigits], b[bDigits], c[cDigits]. Assumes c > 0, bDigits < 2 * MAX_NN_DIGITS, cDigits < MAX_NN_DIGITS. */ void NN_Mod (NN_DIGIT *a, NN_DIGIT *b, NN_UINT bDigits, NN_DIGIT *c, NN_UINT cDigits) { NN_Div (NULL, a, b, bDigits, c, cDigits); } /* Computes a = b * c mod d. a, b, c can be same Lengths: a[digits], b[digits], c[digits], d[digits]. Assumes d > 0, digits < MAX_NN_DIGITS. */ void NN_ModMult (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT *c, NN_DIGIT *d, NN_UINT digits) { NN_DIGIT t[2*MAX_NN_DIGITS]; //memset(t, 0, 2*MAX_NN_DIGITS*NN_DIGIT_LEN); t[2*MAX_NN_DIGITS-1]=0; t[2*MAX_NN_DIGITS-2]=0; NN_Mult (t, b, c, digits); NN_Mod (a, t, 2 * digits, d, digits); } /* Computes a = b^c mod d. Lengths: a[dDigits], b[dDigits], c[cDigits], d[dDigits]. Assumes d > 0, cDigits > 0, dDigits < MAX_NN_DIGITS. */ void NN_ModExp (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT *c, NN_UINT cDigits, NN_DIGIT *d, NN_UINT dDigits) { NN_DIGIT bPower[3][MAX_NN_DIGITS], ci, t[MAX_NN_DIGITS]; int i; uint8_t ciBits, j, s; /* Store b, b^2 mod d, and b^3 mod d. */ NN_Assign (bPower[0], b, dDigits); NN_ModMult (bPower[1], bPower[0], b, d, dDigits); NN_ModMult (bPower[2], bPower[1], b, d, dDigits); NN_ASSIGN_DIGIT (t, 1, dDigits); cDigits = NN_Digits (c, cDigits); for (i = cDigits - 1; i >= 0; i--) { ci = c[i]; ciBits = NN_DIGIT_BITS; /* Scan past leading zero bits of most significant digit. */ if (i == (int)(cDigits - 1)) { while (! DIGIT_2MSB (ci)) { ci <<= 2; ciBits -= 2; } } for (j = 0; j < ciBits; j += 2, ci <<= 2) { /* Compute t = t^4 * b^s mod d, where s = two MSB's of ci. */ NN_ModMult (t, t, t, d, dDigits); NN_ModMult (t, t, t, d, dDigits); if ((s = DIGIT_2MSB (ci)) != 0) NN_ModMult (t, t, bPower[s-1], d, dDigits); } } NN_Assign (a, t, dDigits); } /* Compute a = 1/b mod c, assuming inverse exists. a, b, c can be same Lengths: a[digits], b[digits], c[digits]. Assumes gcd (b, c) = 1, digits < MAX_NN_DIGITS. */ void NN_ModInv (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT *c, NN_UINT digits) { NN_DIGIT q[MAX_NN_DIGITS], t1[MAX_NN_DIGITS], t3[MAX_NN_DIGITS], u1[MAX_NN_DIGITS], u3[MAX_NN_DIGITS], v1[MAX_NN_DIGITS], v3[MAX_NN_DIGITS], w[2*MAX_NN_DIGITS]; int u1Sign; /* Apply extended Euclidean algorithm, modified to avoid negative numbers. */ NN_ASSIGN_DIGIT (u1, 1, digits); NN_AssignZero (v1, digits); NN_Assign (u3, b, digits); NN_Assign (v3, c, digits); u1Sign = 1; while (! NN_Zero (v3, digits)) { NN_Div (q, t3, u3, digits, v3, digits); NN_Mult (w, q, v1, digits); NN_Add (t1, u1, w, digits); NN_Assign (u1, v1, digits); NN_Assign (v1, t1, digits); NN_Assign (u3, v3, digits); NN_Assign (v3, t3, digits); u1Sign = -u1Sign; } /* Negate result if sign is negative. */ if (u1Sign < 0) NN_Sub (a, c, u1, digits); else NN_Assign (a, u1, digits); } /* * a= b/c mod d * algorithm in "From Euclid's GCD to Montgomery Multiplication to the Great Divide" * * */ void NN_ModDivOpt (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT *c, NN_DIGIT *d, NN_UINT digits) { NN_DIGIT A[MAX_NN_DIGITS], B[MAX_NN_DIGITS], U[MAX_NN_DIGITS], V[MAX_NN_DIGITS]; int tmp_even; NN_Assign(A, c, digits); NN_Assign(B, d, digits); NN_Assign(U, b, digits); NN_AssignZero(V, digits); while ((tmp_even = NN_Cmp(A, B, digits)) != 0){ if (NN_EVEN(A, digits)){ NN_RShift(A, A, 1, digits); if (NN_EVEN(U, digits)){ NN_RShift(U, U, 1, digits); }else{ NN_Add(U, U, d, digits); NN_RShift(U, U, 1, digits); } }else if (NN_EVEN(B, digits)){ NN_RShift(B, B, 1, digits); if (NN_EVEN(V, digits)){ NN_RShift(V, V, 1, digits); }else{ NN_Add(V, V, d, digits); NN_RShift(V, V, 1, digits); } }else if (tmp_even > 0){ NN_Sub(A, A, B, digits); NN_RShift(A, A, 1, digits); if (NN_Cmp(U, V, digits) < 0){ NN_Add(U, U, d, digits); } NN_Sub(U, U, V, digits); if (NN_EVEN(U, digits)){ NN_RShift(U, U, 1, digits); }else{ NN_Add(U, U, d, digits); NN_RShift(U, U, 1, digits); } }else{ NN_Sub(B, B, A, digits); NN_RShift(B, B, 1, digits); if (NN_Cmp(V, U, digits) < 0){ NN_Add(V, V, d, digits); } NN_Sub(V, V, U, digits); if (NN_EVEN(V, digits)){ NN_RShift(V, V, 1, digits); }else{ NN_Add(V, V, d, digits); NN_RShift(V, V, 1, digits); } } } NN_Assign(a, U, digits); } /* Computes a = gcd(b, c). a, b, c can be same Lengths: a[digits], b[digits], c[digits]. Assumes b > c, digits < MAX_NN_DIGITS. */ void NN_Gcd (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT *c, NN_UINT digits) { NN_DIGIT t[MAX_NN_DIGITS], u[MAX_NN_DIGITS], v[MAX_NN_DIGITS]; NN_Assign (u, b, digits); NN_Assign (v, c, digits); while (! NN_Zero (v, digits)) { NN_Mod (t, u, digits, v, digits); NN_Assign (u, v, digits); NN_Assign (v, t, digits); } NN_Assign (a, u, digits); } /* Returns sign of a - b. Lengths: a[digits], b[digits]. */ int NN_Cmp (NN_DIGIT *a, NN_DIGIT *b, NN_UINT digits) { int i; for (i = digits - 1; i >= 0; i--) { if (a[i] > b[i]) return (1); /* else added by Panos Kampankis*/ else if (a[i] < b[i]) return (-1); } return (0); } /* Returns nonzero iff a is zero. Lengths: a[digits]. */ int NN_Zero (NN_DIGIT *a, NN_UINT digits) { NN_UINT i; for (i = 0; i < digits; i++) if (a[i]) return (0); return (1); } /* Returns the significant length of a in bits. Lengths: a[digits]. */ unsigned int NN_Bits (NN_DIGIT *a, NN_UINT digits) { if ((digits = NN_Digits (a, digits)) == 0) return (0); return ((digits - 1) * NN_DIGIT_BITS + NN_DigitBits (a[digits-1])); } /* Returns the significant length of a in digits. Lengths: a[digits]. */ unsigned int NN_Digits (NN_DIGIT *a, NN_UINT digits) { int i; for (i = digits - 1; i >= 0; i--) if (a[i]) break; return (i + 1); } /* Computes a = b + c*d, where c is a digit. Returns carry. a, b, c can be same Lengths: a[digits], b[digits], d[digits]. */ static NN_DIGIT NN_AddDigitMult (NN_DIGIT *a, NN_DIGIT *b, NN_DIGIT c, NN_DIGIT *d, NN_UINT digits) { NN_DIGIT carry; unsigned int i;#ifndef INLINE_ASM NN_DOUBLE_DIGIT t
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -