⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testcomp.pas

📁 Delphi 的数学控件
💻 PAS
字号:
{ **********************************************************************
  *                          Program TESTCOMP.PAS                      *
  *                              Version 1.6d                          *
  *                      (c) J. Debord, February 2003                  *
  **********************************************************************
                    Test of complex numbers and functions
        Based on CDEMO.PAS by E.F.Glynn (http://www.efg2.com/Lab/)
  ********************************************************************** }

program testcomp;

uses
  fmath, fspec, pastring;

var
  A : array[1..20] of Complex;
  I : Integer;

  procedure Pause;
  begin
    Writeln;
    Write('Press <Enter> to continue');
    ReadLn;
    Writeln;
  end;

  procedure TestConv;
  var
    K : Integer;
  begin
    WriteLn('Complex number definition/conversion/output: Cmplx / CAbs / CArg / Comp2Str');
    WriteLn(#10, '   z rectangular':25, 'z polar':28);
    WriteLn('    --------------------------  -------------------------------');
    for K := 1 to 20 do
      WriteLn(K:3, Comp2Str(A[K]), ' ', Float2Str(CAbs(A[K]))
                   + ' * Exp(' + Float2Str(CArg(A[K])) + ' * i)');
    Pause;
  end;

  procedure TestArith;
  var
    Z1, Z2 : Complex;
  begin
    WriteLn('Complex arithmetic: CAdd, CSub, CMult, CDiv');
    WriteLn;
    Z1 := Cmplx(1, 1); Z2 := Cmplx(Sqrt(3), - 1);
    WriteLn('Let z1  = ':12, Comp2Str(Z1));
    WriteLn('    z2  = ':12, Comp2Str(Z2));
    WriteLn;
    WriteLn('z1 + z2 = ':12, Comp2Str(CAdd(Z1, Z2)));
    WriteLn('z1 - z2 = ':12, Comp2Str(CSub(Z1, Z2)));
    WriteLn('z1 * z2 = ':12, Comp2Str(CMult(Z1, Z2)));
    WriteLn('z1 / z2 = ':12, Comp2Str(Cdiv(Z1, Z2)));
    Pause;
  end;

  procedure TestFunc(Index : Integer);
  var
    K : Integer;
    C, C1, Z, Z1 : Complex;
  begin
    C := Cmplx(0.5, 0.5);  { C = 0.5 + 0.5*i }
    C1 := CDiv(C_one, C);  { C1 = 1/C }
    NumLength := 9;
    MaxDec := 3;
    Write('z':14);
    case Index of
      1 : WriteLn('     Ln(z)                  Exp(Ln(z))   ':62);
      2 : WriteLn('   ArcSin(z)              Sin(ArcSin(z)) ':62);
      3 : WriteLn('   ArcCos(z)              Cos(ArcCos(z)) ':62);
      4 : WriteLn('   ArcTan(z)              Tan(ArcTan(z)) ':62);
      5 : WriteLn('   ArcSinh(z)            Sinh(ArcSinh(z))':62);
      6 : WriteLn('   ArcCosh(z)            Cosh(ArcCosh(z))':62);
      7 : WriteLn('   ArcTanh(z)            Tanh(ArcTanh(z))':62);
      8 : WriteLn('z^c, c=0.5+0.5*i           (z^c)^(1/c)   ':62);
      9 : WriteLn('   Ln(Gamma(z))              Gamma(z)    ':62);
    end;
    WriteLn('  -------------------------   -----------------------   ',
            '-----------------------');
    for K := 1 to 20 do
      begin
        Write(K:2, Comp2Str(A[K]));
        if ((Index = 1) and (K = 1))             { Log(0) }
        or ((Index = 4) and (K in [8, 12]))      { ArcTan(+/- i) }
        or ((Index = 7) and (K in [6, 10]))      { ArcTanh(+/- 1) }
        or ((Index = 9) and (K in [1, 10, 18]))  { LnGamma(integer <= 0) }
        then
          WriteLn('undefined':20)
        else
          begin
            case Index of
              1 : begin
                    Z := Log(A[K]);
                    Z1 := Expo(Z);
                  end;
              2 : begin
                    Z := ArcSin(A[K]);
                    Z1 := CSin(Z);
                  end;
              3 : begin
                    Z := ArcCos(A[K]);
                    Z1 := CCos(Z);
                  end;
              4 : begin
                    Z := CArcTan(A[K]);
                    Z1 := Tan(Z);
                  end;
              5 : begin
                    Z := ArcSinh(A[K]);
                    Z1 := Sinh(Z);
                  end;
              6 : begin
                    Z := ArcCosh(A[K]);
                    Z1 := Cosh(Z);
                  end;
              7 : begin
                    Z := ArcTanh(A[K]);
                    Z1 := Tanh(Z);
                  end;
              8 : begin
                    Z := Power(A[K], C);  { z = a^c }
                    Z1 := Power(Z, C1);   { z1 = z^(1/c) = a }
                  end;
              9 : begin
                    Z := LnGamma(A[K]);
                    Z1 := Expo(Z);
                  end;
            end;
            WriteLn(' ', Comp2Str(Z), ' ', Comp2Str(Z1))
          end;
      end;
    Pause;
  end;

  procedure TestRoot;
  { Computes the 3 cubic roots of -1+i }
  var
    A, Z, Z1 : Complex;
    K : Integer;
  begin
    A := Cmplx(-1.0, 1.0);
    WriteLn('The 3 cube roots of (-1+i)', #10);
    WriteLn('z':14, 'z^(1/3)                  [z^(1/3)]^3  ':62);
    WriteLn('  -------------------------   -----------------------   ',
            '-----------------------');
    for K := 0 to 2 do
      begin
        Z := CRoot(A, K, 3);
        Z1 := Power(Z, 3);
        WriteLn(K:2, Comp2Str(A), ' ', Comp2Str(Z), ' ', Comp2Str(Z1));
      end;
    Pause;
  end;

begin
  A[ 1] := Cmplx( 0.0,  0.0);
  A[ 2] := Cmplx( 0.5,  0.5);
  A[ 3] := Cmplx(-0.5,  0.5);
  A[ 4] := Cmplx(-0.5, -0.5);
  A[ 5] := Cmplx( 0.5, -0.5);
  A[ 6] := Cmplx( 1.0,  0.0);
  A[ 7] := Cmplx( 1.0,  1.0);
  A[ 8] := Cmplx( 0.0,  1.0);
  A[ 9] := Cmplx(-1.0,  1.0);
  A[10] := Cmplx(-1.0,  0.0);
  A[11] := Cmplx(-1.0, -1.0);
  A[12] := Cmplx( 0.0, -1.0);
  A[13] := Cmplx( 1.0, -1.0);
  A[14] := Cmplx( 5.0,  0.0);
  A[15] := Cmplx( 5.0,  3.0);
  A[16] := Cmplx( 0.0,  3.0);
  A[17] := Cmplx(-5.0,  3.0);
  A[18] := Cmplx(-5.0,  0.0);
  A[19] := Cmplx( 5.0, -3.0);
  A[20] := Cmplx( 0.0, -3.0);

  TestConv;
  TestArith;
  for I := 1 to 9 do
    TestFunc(I);
  TestRoot;
end.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -