📄 testmcmc.pas
字号:
{ **********************************************************************
* Program TESTMCMC.PAS *
* Version 1.3d *
* (c) J. Debord, February 2003 *
**********************************************************************
This program simulates a multinormal distribution by Markov Chain
Monte Carlo (MCMC) using the Hastings-Metropolis algorithm.
Although MCMC is best used when there is no direct way to simulate
the distribution, it is used here for demonstration purposes since
its results can be compared to those of the direct method (program
RANMUL.PAS).
The pdf P(X) of the multinormal distribution is such that:
P(X) = C * Exp(- F(X) / T)
where F(X) = (X - M)' * V^(-1) * (X - M)
C = 1/sqrt(|V| * (2*Pi)^N)
T = 2
M is the mean vector and V the variance-covariance matrix of
the distribution. N is the dimension of the distribution.
The constant C is not used in the simulation.
The mean vector and variance-covariance matrix are stored in a data
file with the following structure:
Line 1 : Title of study
Line 2 : Number of variables (N), e.g. 2 for binormal
Line 3 to (N + 2) : Means and standard deviations
Next lines : Correlation coefficients, in
lower triangular matrix form
The file RANMUL.DAT is an example data file.
The results are stored in the output file TESTMCMC.TXT
********************************************************************** }
program testmcmc;
uses
fmath, matrices, mcmc;
const
TEMP = 2.0; { Temperature }
var
Title : String; { Title of study }
N : Integer; { Number of variables }
M : TVector; { Mean vector of original distribution }
V : TMatrix; { Variance-covariance matrix of original distribution }
V_inv : TMatrix; { Inverse variance-covariance matrix }
Xmat : TMatrix; { Matrix of simulated vectors }
Msim : TVector; { Mean of simulated distribution }
Vsim : TMatrix; { Variance-covariance matrix of simulated distrib. }
X_min : TVector; { Coordinates of the minimum of F(X)
= mode of simulated distribution }
F_min : Float; { Value of F(X) at minimum }
I : Integer; { Loop variable }
ErrCode : Integer; { Error code }
function ReadParam(FileName : String; var Title : String;
var N : Integer; var M : TVector;
var V, V_inv : TMatrix) : Integer;
var
F : Text; { Data file }
I, J : Integer; { Loop variables }
S : TVector; { Standard deviations }
R : Float; { Correlation coefficient }
begin
Assign(F, FileName);
Reset(F);
Readln(F, Title);
Readln(F, N);
DimVector(M, N);
DimVector(S, N);
DimMatrix(V, N, N);
DimMatrix(V_inv, N, N);
{ Read means and standard deviations. Compute variances }
for I := 1 to N do
begin
Read(F, M[I], S[I]);
V[I][I] := Sqr(S[I]);
end;
{ Read correlation coefficients and compute covariances }
for I := 2 to N do
for J := 1 to Pred(I) do
begin
Read(F, R);
V[I][J] := R * S[I] * S[J];
V[J][I] := V[I][J];
end;
{ Compute the inverse of the variance-covariance matrix }
ReadParam := InvMat(V, 1, N, V_inv);
Close(F);
end;
function ObjFunc(X : TVector) : Float;
{ Computes the function F(X) }
var
Sum1, Sum2 : Float;
I, J : Integer;
D : TVector;
begin
DimVector(D, N);
for I := 1 to N do
D[I] := X[I] - M[I];
Sum1 := 0.0;
for I := 1 to N do
Sum1 := Sum1 + V_inv[I][I] * Sqr(D[I]);
Sum2 := 0.0;
for I := 2 to N do
for J := 1 to Pred(I) do
Sum2 := Sum2 + V_inv[I][J] * D[I] * D[J];
ObjFunc := Sum1 + 2.0 * Sum2;
end;
procedure WriteResults(Title : String; M : TVector;
V : TMatrix; N : Integer);
var
I, J : Integer;
S : TVector;
R : Float;
begin
WriteLn;
WriteLn(Title);
WriteLn;
WriteLn(' Mean S.D.');
WriteLn('--------------------');
DimVector(S, N);
for I := 1 to N do
begin
S[I] := Sqrt(V[I][I]);
Writeln(M[I]:10:4, S[I]:10:4);
end;
WriteLn;
WriteLn('Correlation matrix:');
WriteLn;
for I := 2 to N do
begin
for J := 1 to Pred(I) do
begin
R := V[I][J] / (S[I] * S[J]);
Write(R:10:4);
end;
WriteLn;
end;
end;
procedure WriteOutputFile(Title : String; Xmat : TMatrix; N : Integer);
var
F : Text;
I, J : Integer;
begin
Assign(F, 'testmcmc.txt');
Rewrite(F);
WriteLn(F, Title);
Write(F, ' Iter');
for I := 1 to N do
Write(F, ' X', I);
WriteLn(F);
for I := 1 to MH_SavedSim do
begin
Write(F, I:5);
for J := 1 to N do
Write(F, Xmat[J][I]:10:4);
WriteLn(F);
end;
Close(F);
end;
begin
if ReadParam('ranmul.dat', Title, N, M, V, V_inv) = MAT_SINGUL then
begin
WriteLn('Variance-covariance matrix is singular!');
Exit;
end;
DimVector(Msim, N);
DimVector(X_min, N);
DimMatrix(Vsim, N, N);
DimMatrix(Xmat, N, MH_SavedSim);
{ Initialize the mean vector and the variance-covariance matrix.
For the sake of demonstration we start at a distance from the
true mean and with enhanced standard deviations. }
for I := 1 to N do
begin
Msim[I] := 3.0 * M[I];
Vsim[I,I] := 10.0 * V[I,I];
end;
{ Perform Metropolis-Hastings simulations }
Write('Running. Please wait...');
ErrCode := Hastings(ObjFunc, TEMP, Msim, Vsim,
1, N, Xmat, X_min, F_min);
if ErrCode = 0 then
begin
WriteResults('Original distribution', M, V, N);
WriteResults('Simulated distribution', Msim, Vsim, N);
WriteOutputFile(Title, Xmat, N);
end
else
WriteLn('Variance-covariance matrix is not positive definite!');
end.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -