📄 filtspec.m
字号:
function [fltr,f]=filtspec(dt,tmax,fmin,fmax,phase,max_atten)
% FILTSPEC: designs the filter spectrum for FILTF
%
% [fltr,f]=filtspec(dt,tmax,fmin,fmax,phase,max_atten)
% [fltr,f]=filtspec(dt,tmax,fmin,fmax,phase)
% [fltr,f]=filtspec(dt,tmax,fmin,fmax)
%
% FILTSPEC designs and returns the frequency spectrum of the
% filter which FILTF applies.
% FILTF filters the input trace in the frequency domain.
% Input trace length in samples (as implied by tmax and dt)
% is automatically padded to the next larger power of two.
% Filter slopes are formed from Gaussian functions.
%
% dt ... temporal sample rate in seconds (must be less than .025s)
% tmax ... temporal length of trace to be filtered
% fmin ... a two element vector specifying:
% fmin(1) : 3db down point of filter on low end (Hz)
% fmin(2) : gaussian width on low end
% note: if only one element is given, then fmin(2) defaults
% to 5 Hz. Set to [0 0] for a low pass filter
% fmax ... a two element vector specifying:
% fmax(1) : 3db down point of filter on high end (Hz)
% fmax(2) : gaussian width on high end
% note: if only one element is given, then fmax(2) defaults
% to 10% of Fnyquist. Set to [0 0] for a high pass filter.
% phase... 0 ... zero phase filter
% 1 ... minimum phase filter
% any other number ... constant phase rotation of that
% many degrees
% ****** default = 0 ********
% note: Minimum phase filters are approximate in the sense that
% the output from FILTF is truncated to be the same length as the
% input. This works fine as long as the trace being filtered is
% long compared to the impulse response of your filter. Be wary
% of narrow band minimum phase filters on short time series. The
% result may not be minimum phase.
%
% max_atten= maximum attenuation in decibels
% ******* default= 80db *********
%
% fltr= complex filter spectrum
% returned as a column vector
% f= frequency coordinate vector for fltr
%
% by G.F. Margrave, July 1991
% revised August 1996
%
% determine frequency coordinate vector
nt= tmax/dt+1;
nt= 2^nextpow2(nt);
t= (0:nt-1)*dt;
tmax=t(length(t));
fnyq=1/(2*dt);
nf= nt/2+1;
df= fnyq/(nf-1);
f= (0:nf-1)*df;
% set defaults
if nargin < 6
max_atten=80.;
end
if nargin < 5
phase=0;
end
if length(fmax)==1
fmax(2)=.1/(2.*(t(2)-t(1)));
end
if length(fmin)==1
fmin(2)=5;
end
dbd=3.0; % this controls the dbdown values of fmin and fmax
% design low end gaussian
if fmin(1)>0
fnotl=fmin(1)+sqrt(log(10)*dbd/20.)*fmin(2);
%HDG removed to be consistent with revised filtf
% fnotl= round(fnotl/df)*df;
gnot=10^(-max_atten/20.);
glow=gnot+gauss(f,fnotl,fmin(2))';
%HDG added to force mean to zero
glow(1)=0;
else
glow=1;
fnotl=0;
end
% design high end gaussian
if fmax(1)>0
fnoth=fmax(1)-sqrt(log(10)*dbd/20.)*fmax(2);
%HDG removed to be consistent with revised filtf
% fnoth= round(fnoth/df)*df;
gnot=10^(-max_atten/20.);
ghigh=gnot+gauss(f,fnoth,fmax(2))';
else
ghigh=1;
fnoth=0;
end
% make filter
%HDG removed this error test, as new code handles fnoth<=fnotl
% if(fnoth<=fnotl & fnoth~= 0)
% error('filter design error');
% end
fltr=ones(nf,1);
%HDG change to floor and ceil
% nl=fnotl/df+1;
% nh=fnoth/df+1;
nl=floor(fnotl/df);
nh=ceil(fnoth/df);
% replace if with if from revised filtf
if nl==0
fltr=[fltr(1:nh);ghigh(nh+1:length(f))];
elseif nh==0
fltr=[glow(1:nl+1);fltr(nl+2:length(f))];
else
fltr=[glow(1:nl+1);fltr(nl+2:nf)].*[fltr(1:nh);ghigh(nh+1:length(f))];
fltr=fltr/max(abs(fltr));
end
% do phase
if phase==1
L1=1:length(fltr);L2=length(fltr)-1:-1:2;
symspec=[fltr(L1);conj(fltr(L2))];
cmpxspec=log(symspec)+i*zeros(size(symspec));
fltr=exp(conj(hilbm(cmpxspec)));
fltr=fltr(1:length(f));
else
fltr= fltr*exp(i*pi*phase/180);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -