⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtoa.java

📁 java中比较著名的js引擎当属mozilla开源的rhino
💻 JAVA
📖 第 1 页 / 共 4 页
字号:
            int word1 = (int)(dBits);            int[] e = new int[1];            int[] bbits = new int[1];            b = d2b(df, e, bbits);//            JS_ASSERT(e < 0);            /* At this point df = b * 2^e.  e must be less than zero because 0 < df < 1. */            int s2 = -(word0 >>> Exp_shift1 & Exp_mask >> Exp_shift1);            if (s2 == 0)                s2 = -1;            s2 += Bias + P;            /* 1/2^s2 = (nextDouble(d) - d)/2 *///            JS_ASSERT(-s2 < e);            BigInteger mlo = BigInteger.valueOf(1);            BigInteger mhi = mlo;            if ((word1 == 0) && ((word0 & Bndry_mask) == 0)                && ((word0 & (Exp_mask & Exp_mask << 1)) != 0)) {                /* The special case.  Here we want to be within a quarter of the last input                   significant digit instead of one half of it when the output string's value is less than d.  */                s2 += Log2P;                mhi = BigInteger.valueOf(1<<Log2P);            }            b = b.shiftLeft(e[0] + s2);            BigInteger s = BigInteger.valueOf(1);            s = s.shiftLeft(s2);            /* At this point we have the following:             *   s = 2^s2;             *   1 > df = b/2^s2 > 0;             *   (d - prevDouble(d))/2 = mlo/2^s2;             *   (nextDouble(d) - d)/2 = mhi/2^s2. */            BigInteger bigBase = BigInteger.valueOf(base);            boolean done = false;            do {                b = b.multiply(bigBase);                BigInteger[] divResult = b.divideAndRemainder(s);                b = divResult[1];                digit = (char)(divResult[0].intValue());                if (mlo == mhi)                    mlo = mhi = mlo.multiply(bigBase);                else {                    mlo = mlo.multiply(bigBase);                    mhi = mhi.multiply(bigBase);                }                /* Do we yet have the shortest string that will round to d? */                int j = b.compareTo(mlo);                /* j is b/2^s2 compared with mlo/2^s2. */                BigInteger delta = s.subtract(mhi);                int j1 = (delta.signum() <= 0) ? 1 : b.compareTo(delta);                /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */                if (j1 == 0 && ((word1 & 1) == 0)) {                    if (j > 0)                        digit++;                    done = true;                } else                if (j < 0 || (j == 0 && ((word1 & 1) == 0))) {                    if (j1 > 0) {                        /* Either dig or dig+1 would work here as the least significant digit.                           Use whichever would produce an output value closer to d. */                        b = b.shiftLeft(1);                        j1 = b.compareTo(s);                        if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output                                     * such as 3.5 in base 3.  */                            digit++;                    }                    done = true;                } else if (j1 > 0) {                    digit++;                    done = true;                }//                JS_ASSERT(digit < (uint32)base);                buffer[p++] = BASEDIGIT(digit);            } while (!done);            StringBuffer sb = new StringBuffer(intDigits.length() + 1 + p);            sb.append(intDigits);            sb.append('.');            sb.append(buffer, 0, p);            return sb.toString();        }    }    /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.     *     * Inspired by "How to Print Floating-Point Numbers Accurately" by     * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].     *     * Modifications:     *  1. Rather than iterating, we use a simple numeric overestimate     *     to determine k = floor(log10(d)).  We scale relevant     *     quantities using O(log2(k)) rather than O(k) multiplications.     *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't     *     try to generate digits strictly left to right.  Instead, we     *     compute with fewer bits and propagate the carry if necessary     *     when rounding the final digit up.  This is often faster.     *  3. Under the assumption that input will be rounded nearest,     *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.     *     That is, we allow equality in stopping tests when the     *     round-nearest rule will give the same floating-point value     *     as would satisfaction of the stopping test with strict     *     inequality.     *  4. We remove common factors of powers of 2 from relevant     *     quantities.     *  5. When converting floating-point integers less than 1e16,     *     we use floating-point arithmetic rather than resorting     *     to multiple-precision integers.     *  6. When asked to produce fewer than 15 digits, we first try     *     to get by with floating-point arithmetic; we resort to     *     multiple-precision integer arithmetic only if we cannot     *     guarantee that the floating-point calculation has given     *     the correctly rounded result.  For k requested digits and     *     "uniformly" distributed input, the probability is     *     something like 10^(k-15) that we must resort to the Long     *     calculation.     */    static int word0(double d)    {        long dBits = Double.doubleToLongBits(d);        return (int)(dBits >> 32);    }    static double setWord0(double d, int i)    {        long dBits = Double.doubleToLongBits(d);        dBits = ((long)i << 32) | (dBits & 0x0FFFFFFFFL);        return Double.longBitsToDouble(dBits);    }    static int word1(double d)    {        long dBits = Double.doubleToLongBits(d);        return (int)(dBits);    }    /* Return b * 5^k.  k must be nonnegative. */    // XXXX the C version built a cache of these    static BigInteger pow5mult(BigInteger b, int k)    {        return b.multiply(BigInteger.valueOf(5).pow(k));    }    static boolean roundOff(StringBuffer buf)    {        int i = buf.length();        while (i != 0) {            --i;            char c = buf.charAt(i);            if (c != '9') {                buf.setCharAt(i, (char)(c + 1));                buf.setLength(i + 1);                return false;            }        }        buf.setLength(0);        return true;    }    /* Always emits at least one digit. */    /* If biasUp is set, then rounding in modes 2 and 3 will round away from zero     * when the number is exactly halfway between two representable values.  For example,     * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.     * 2.49 will still round to 2, and 2.51 will still round to 3. */    /* bufsize should be at least 20 for modes 0 and 1.  For the other modes,     * bufsize should be two greater than the maximum number of output characters expected. */    static int    JS_dtoa(double d, int mode, boolean biasUp, int ndigits,                    boolean[] sign, StringBuffer buf)    {        /*  Arguments ndigits, decpt, sign are similar to those            of ecvt and fcvt; trailing zeros are suppressed from            the returned string.  If not null, *rve is set to point            to the end of the return value.  If d is +-Infinity or NaN,            then *decpt is set to 9999.            mode:            0 ==> shortest string that yields d when read in            and rounded to nearest.            1 ==> like 0, but with Steele & White stopping rule;            e.g. with IEEE P754 arithmetic , mode 0 gives            1e23 whereas mode 1 gives 9.999999999999999e22.            2 ==> max(1,ndigits) significant digits.  This gives a            return value similar to that of ecvt, except            that trailing zeros are suppressed.            3 ==> through ndigits past the decimal point.  This            gives a return value similar to that from fcvt,            except that trailing zeros are suppressed, and            ndigits can be negative.            4-9 should give the same return values as 2-3, i.e.,            4 <= mode <= 9 ==> same return as mode            2 + (mode & 1).  These modes are mainly for            debugging; often they run slower but sometimes            faster than modes 2-3.            4,5,8,9 ==> left-to-right digit generation.            6-9 ==> don't try fast floating-point estimate            (if applicable).            Values of mode other than 0-9 are treated as mode 0.            Sufficient space is allocated to the return value            to hold the suppressed trailing zeros.        */        int b2, b5, i, ieps, ilim, ilim0, ilim1,            j, j1, k, k0, m2, m5, s2, s5;        char dig;        long L;        long x;        BigInteger b, b1, delta, mlo, mhi, S;        int[] be = new int[1];        int[] bbits = new int[1];        double d2, ds, eps;        boolean spec_case, denorm, k_check, try_quick, leftright;        if ((word0(d) & Sign_bit) != 0) {            /* set sign for everything, including 0's and NaNs */            sign[0] = true;            // word0(d) &= ~Sign_bit;  /* clear sign bit */            d = setWord0(d, word0(d) & ~Sign_bit);        }        else            sign[0] = false;        if ((word0(d) & Exp_mask) == Exp_mask) {            /* Infinity or NaN */            buf.append(((word1(d) == 0) && ((word0(d) & Frac_mask) == 0)) ? "Infinity" : "NaN");            return 9999;        }        if (d == 0) {//          no_digits:            buf.setLength(0);            buf.append('0');        /* copy "0" to buffer */            return 1;        }        b = d2b(d, be, bbits);        if ((i = (int)(word0(d) >>> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {            d2 = setWord0(d, (word0(d) & Frac_mask1) | Exp_11);            /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5             * log10(x)  =  log(x) / log(10)             *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))             * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)             *             * This suggests computing an approximation k to log10(d) by             *             * k = (i - Bias)*0.301029995663981             *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );             *             * We want k to be too large rather than too small.             * The error in the first-order Taylor series approximation             * is in our favor, so we just round up the constant enough             * to compensate for any error in the multiplication of             * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,             * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,             * adding 1e-13 to the constant term more than suffices.             * Hence we adjust the constant term to 0.1760912590558.             * (We could get a more accurate k by invoking log10,             *  but this is probably not worthwhile.)             */            i -= Bias;            denorm = false;        }        else {            /* d is denormalized */            i = bbits[0] + be[0] + (Bias + (P-1) - 1);            x = (i > 32) ? word0(d) << (64 - i) | word1(d) >>> (i - 32) : word1(d) << (32 - i);//            d2 = x;//            word0(d2) -= 31*Exp_msk1; /* adjust exponent */            d2 = setWord0(x, word0(x) - 31*Exp_msk1);            i -= (Bias + (P-1) - 1) + 1;            denorm = true;        }        /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */        ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;        k = (int)ds;        if (ds < 0.0 && ds != k)            k--;    /* want k = floor(ds) */        k_check = true;        if (k >= 0 && k <= Ten_pmax) {            if (d < tens[k])                k--;            k_check = false;        }        /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.           If k_check is zero, we're guaranteed that k = floor(log10(d)). */        j = bbits[0] - i - 1;        /* At this point d = b/2^j, where b is an odd integer. */        if (j >= 0) {            b2 = 0;            s2 = j;        }        else {            b2 = -j;            s2 = 0;        }        if (k >= 0) {            b5 = 0;            s5 = k;            s2 += k;        }        else {            b2 -= k;            b5 = -k;            s5 = 0;        }        /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,           b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */        if (mode < 0 || mode > 9)            mode = 0;        try_quick = true;        if (mode > 5) {            mode -= 4;            try_quick = false;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -