📄 sf_loopback_tx.uc
字号:
/* sf_loopback_tx.uc
*
* This code transmits a flow control packet and then waits for data at the
* FCIFIFO. When it is received, a check is done on how many packets have
* been received. If it has not received the expected number of packets,
* it signals the XScale to extract the payload of the flow control packet
* received through the FCIFIFO. Then is polls for a signal from the XScale
* for the DRAM addres for the next packet to transmit. And the code loops
* around to transmit another low control packet until the expected number
* of received packets is met.
*
*---------------------------------------------------------------------------
*
* I N T E L P R O P R I E T A R Y
*
* COPYRIGHT (c) 2002 BY INTEL CORPORATION. ALL RIGHTS
* RESERVED. NO PART OF THIS PROGRAM OR PUBLICATION MAY
* BE REPRODUCED, TRANSMITTED, TRANSCRIBED, STORED IN A
* RETRIEVAL SYSTEM, OR TRANSLATED INTO ANY LANGUAGE OR COMPUTER
* LANGUAGE IN ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANICAL,
* MAGNETIC, OPTICAL, CHEMICAL, MANUAL, OR OTHERWISE, WITHOUT
* THE PRIOR WRITTEN PERMISSION OF :
*
* INTEL CORPORATION
*
* 2200 MISSION COLLEGE BLVD
*
* SANTA CLARA, CALIFORNIA 95052-8119
*
*---------------------------------------------------------------------------
*
*
* system: IXDP2400
* subsystem: DIAG
* author: dalsraja, March, 2002
* revisions:
*
*
* --------------------------------------------------------------------------
*/
#include "common_uc.h"
#define TX_ELEMENT_SIZE MSF_ELEMENTSIZE_128
#define TX_ENABLE_MASK 0x1
#define TX_MODE MSF_CSIX
#define TX_WIDTH MSF_WIDTH_1x32
#define TX_SINGLE_PHY MSF_SINGLE_PHY
#define TBUF_ADDR_SHF (6 + TX_ELEMENT_SIZE)
#define TX_ELEMENT_SIZE_BYTE (1 << TBUF_ADDR_SHF)
#define TBUF_ELEM_COUNT (1 << (7 - TX_ELEMENT_SIZE)) // Tot. elements
#define TBUF_DATA_ELEM_COUNT ((TBUF_ELEM_COUNT >> 2) * 3) // (Tot. elements / 4) * 3
#define TBUF_CTRL_ELEM_COUNT (TBUF_ELEM_COUNT - TBUF_DATA_ELEM_COUNT)
#define SCRATCH_ADDRESS 0x400
#define DRAM_BASE_SRC 0x1000000
#define SRAM_BASE_DEST 0x100000
.reg temp offset $pci_rw loops get_ring_num put_ring_num $scratch_data
.reg pkt_count_tx pkt_count_rx refcnt byte_cnt
.reg MsfAddress MsfAddress0 MsfAddress1 tbuf_addr
.reg TxConfigData0
.reg $TxConfigData0
.reg $TxControlWord0 $TxControlWord1
.reg tbuf_element
.reg dram_addr tbuf scratch_addr sram_addr pci_base
.reg payload_len $temp_xfer
.sig dram_sig msf_sig pci_sig sram_sig scratch_sig
.xfer_order $TxControlWord0 $TxControlWord1
br=ctx[0, init#]
ctx_arb[kill]
init#:
#ifdef WORKBENCH_SIM
.begin
.reg tmp_addr $tmp_data
.sig scratch_sig
immed[tmp_addr, 0x200]
wait_for_signal#:
scratch[read, $tmp_data, tmp_addr, 0, 1], ctx_swap[scratch_sig]
alu[--, $tmp_data, -, 0]
bne[wait_for_signal#]
.end
#endif
immed[tbuf_element, 0]
immed[pkt_count_tx, 0]
immed[scratch_addr, SCRATCH_ADDRESS]
immed[sram_addr, (SRAM_BASE_DEST & MASK_16BIT)]
immed_w1[sram_addr, ((SRAM_BASE_DEST >> 16) & MASK_16BIT)]
alu[sram_addr, sram_addr, OR, CHAN_NUMBER, <<SRAM_CHANNEL_NUMBER_FIELD]
immed[dram_addr, (DRAM_BASE_SRC & MASK_16BIT)]
immed_w1[dram_addr, ((DRAM_BASE_SRC >> 16) & MASK_16BIT)]
immed[pci_base, (PCI_LOCAL_CSR_BASE & MASK_16BIT)]
immed_w1[pci_base, ((PCI_LOCAL_CSR_BASE >> 16) & MASK_16BIT)]
alu[get_ring_num, --, B, RING_0, <<2] // ring number in a register
alu[put_ring_num, --, B, RING_1, <<2] // ring number in a register
//****************************************************
// Configure TX Control
//****************************************************
immed[tbuf, RBUF_TBUF]
immed[MsfAddress, MSF_TX_CONTROL]
immed[TxConfigData0, (TX_ELEMENT_SIZE << 2)] // put control and data into diff freelist
immed_w1[TxConfigData0, ((TX_ENABLE_MASK << 8) | (TX_MODE << 6) | (TX_WIDTH << 4) | (TX_SINGLE_PHY << 3) | (0 << 1) | (1 << 0))]
alu[$TxConfigData0, --, B, TxConfigData0]
msf[write, $TxConfigData0, MsfAddress, 0, 1], ctx_swap[msf_sig]
immed_w1[TxConfigData0, ((TX_ENABLE_MASK << 12) | (TX_ENABLE_MASK << 8) | (TX_MODE << 6) | (TX_WIDTH << 4) | (TX_SINGLE_PHY << 3) | (0 << 1) | (1 << 0))]
alu[$TxConfigData0, --, B, TxConfigData0]
msf[write, $TxConfigData0, MsfAddress, 0, 1], ctx_swap[msf_sig]
//**************************************************
// Configure Scratch Ring
//**************************************************
.begin
.reg $scratch_base $scratch_head $scratch_tail
.sig scratch_sig1 scratch_sig2 scratch_sig3
immed[$scratch_head,0]
immed[$scratch_tail,0]
alu[$scratch_base, --, B, 0] // Use ring size of 128 lw and base 0x0
cap[write, $scratch_base, SCRATCH_RING_BASE_0], sig_done[scratch_sig1]
cap[write, $scratch_head, SCRATCH_RING_HEAD_0], sig_done[scratch_sig2]
cap[write, $scratch_tail, SCRATCH_RING_TAIL_0], sig_done[scratch_sig3]
ctx_arb[scratch_sig1, scratch_sig2, scratch_sig3]
alu[$scratch_base, --, B, 1, <<9] // Use ring size of 128 lw and base 0x200
cap[write, $scratch_base, SCRATCH_RING_BASE_1], sig_done[scratch_sig1]
cap[write, $scratch_head, SCRATCH_RING_HEAD_1], sig_done[scratch_sig2]
cap[write, $scratch_tail, SCRATCH_RING_TAIL_1], sig_done[scratch_sig3]
ctx_arb[scratch_sig1, scratch_sig2, scratch_sig3]
.end
immed[pkt_count_rx, 0]
next_packet#:
#ifndef WORKBENCH_SIM
wait_for_data#:
scratch[get, $scratch_data, get_ring_num, 0, 1], ctx_swap[scratch_sig]
alu[--, $scratch_data, -, 0]
beq[wait_for_data#] // If 0, check again
alu[byte_cnt, --, B, $scratch_data]
#else
immed[byte_cnt, 64]
#endif
//****************************************************
// Move data to TBUF from DRAM
//****************************************************
transmit#:
alu[tbuf_addr, tbuf, OR, tbuf_element, <<TBUF_ADDR_SHF]
alu[tbuf_addr, --, B, tbuf_addr, <<5]
alu[tbuf_addr, tbuf_addr, OR, 1, <<4] // set the overwrite bit for the TBUF addr
alu[refcnt, --, B, byte_cnt, >>3]
alu[--, byte_cnt, AND, 0x7]
beq[cont1#]
alu[refcnt, refcnt, +, 1] // Calculate the refcnt for indirect ref
cont1#:
alu[refcnt, --, B, refcnt, <<21] // Shift to appropriate bit
alu[refcnt, refcnt, OR, 1, <<25] // Set the overwrite bit for refcnt
alu[--, tbuf_addr, OR, refcnt] // indirect ref
dram[tbuf_wr, --, dram_addr, 0, 8], indirect_ref, sig_done[dram_sig]
ctx_arb[dram_sig]
#ifdef MSF_WORKAROUND
alu[--, --, B, tbuf_addr] // indirect ref
dram[tbuf_wr, --, dram_addr, 0, 2], indirect_ref, sig_done[dram_sig]
ctx_arb[dram_sig]
#endif
//*******************************************************
// Write the Transmit Control Word with appropriate data
//*******************************************************
immed[$TxControlWord1, 0] // No extension header for flow control packet
immed[temp, CSIX_FLOWCONTROL]
alu[$TxControlWord0, temp, OR, byte_cnt, <<24]
immed[MsfAddress, TBUF_ELEMENT_CONTROL_V]
alu[MsfAddress, MsfAddress, OR, tbuf_element, <<3] //TBUF_CTRL_ADDR_SHF
msf[write, $TxControlWord0, MsfAddress, 0, 2], ctx_swap[msf_sig] // Write control word and validate
alu[pkt_count_tx, pkt_count_tx, +, 1]
alu[tbuf_element, tbuf_element, +, 1]
.if (tbuf_element == TBUF_DATA_ELEM_COUNT)
immed[tbuf_element, 0]
.endif
// Wait for FCIFIFO data (through CBUS)
immed[byte_cnt, 0]
immed[MsfAddress, FCIFIFO]
wait_for_fcififo#:
br_!inp_state[fci_not_empty, wait_for_fcififo#] // Branch to label is FCIFIFO empty
msf[read, $temp_xfer, MsfAddress, 0, 1], ctx_swap[msf_sig] // Read FCIFIFO
alu[payload_len, 0xFF, AND, $temp_xfer, >>16] // extract payload length
process_fcififo_data#:
alu[$temp_xfer, --, B, $temp_xfer]
scratch[write, $temp_xfer, scratch_addr, byte_cnt, 1], ctx_swap[scratch_sig]
alu[byte_cnt, byte_cnt, +, 4] // Inc byte count by 4 as a long word was read from FCIFIFO
read_fcififo#:
br_!inp_state[fci_not_empty, fcififo_empty#] // Branch to label if FCIFIFO empty
msf[read, $temp_xfer, MsfAddress, 0, 1], ctx_swap[msf_sig] // Read FCIFIFO
br[process_fcififo_data#]
fcififo_empty#: // FCIFIFO is now empty
#ifndef WORKBENCH_SIM
alu[$scratch_data, --, B, byte_cnt]
scratch[put, $scratch_data, put_ring_num, 0, 1], ctx_swap[scratch_sig]
#endif
alu[pkt_count_rx, pkt_count_rx, +, 1] // Increment the received packet count
br[next_packet#]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -