⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sys_loopback_pl_3_in_tx.uc

📁 开发Inetl IXP2400平台所必须的硬件诊断和测试程序。该软件包支持的功能包括CPU基本功能检测
💻 UC
字号:
/* line_rate_bw_in_tx.uc
 *
 *
 *
 * NOTE: THIS IS NOT A PERFORMANCE BENCHMARK!!!! IT IS JUST TO CHECK IF THE
 *       HARDWARE IS ABLE TO HANDLE DATA AT THE LINERATE THAT IS BEING
 *       PUMPED INTO THE SYSTEM
 *
 *---------------------------------------------------------------------------
 *                                                                      
 *                  I N T E L   P R O P R I E T A R Y                   
 *                                                                      
 *     COPYRIGHT (c)  2002 BY  INTEL  CORPORATION.  ALL RIGHTS          
 *     RESERVED.   NO  PART  OF THIS PROGRAM  OR  PUBLICATION  MAY      
 *     BE  REPRODUCED,   TRANSMITTED,   TRANSCRIBED,   STORED  IN  A    
 *     RETRIEVAL SYSTEM, OR TRANSLATED INTO ANY LANGUAGE OR COMPUTER    
 *     LANGUAGE IN ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANICAL,    
 *     MAGNETIC,  OPTICAL,  CHEMICAL, MANUAL, OR OTHERWISE,  WITHOUT    
 *     THE PRIOR WRITTEN PERMISSION OF :                                
 *                                                                      
 *                        INTEL  CORPORATION                            
 *                                                                     
 *                     2200 MISSION COLLEGE BLVD                        
 *                                                                      
 *               SANTA  CLARA,  CALIFORNIA  95052-8119                  
 *                                                                      
 *---------------------------------------------------------------------------
 *
 *
 *  system: IXDP2400
 *  subsystem: DIAG
 *  author: dalsraja, November 11, 2002
 *  revisions:
 * 
 * 
 * --------------------------------------------------------------------------
 */


#include "sys_loopback_pl_3.h"

#define NEXT_CTX_SIGNAL			IN_SAME_ME_SIG_NUM
#define BUFFER_ADDR_MASK		0xFFFFFF

#define SIG_CTX_DATA			((1 << 7) | (NEXT_CTX_SIGNAL << 3))

.reg sram_addr
.reg temp $temp
.reg MsfAddress MsfAddress0 MsfAddress1 TxSequenceAddr
.reg byte_count ring_num mask_qa
.reg TxConfigData0
.reg $TxConfigData0
.reg $TxControlWord0 $TxControlWord1
.reg $scratch_data0 $scratch_data1
.reg @tbuf_element cur_tbuf_elem
.reg buf_addr buf_offset rx_port_num pkt_buff_addr TBuf_Base cur_tbuf_addr
.reg sram_channel_number
.reg @sramDescBase @dramPacketBase t0
.reg $prepend_data0 $prepend_data1
.sig dram_sig sram_sig scratch_sig
.sig msf_sig next_ctx_sig

.xfer_order $TxControlWord0 $TxControlWord1
.xfer_order $scratch_data0 $scratch_data1
.xfer_order $prepend_data0 $prepend_data1

.addr next_ctx_sig IN_SAME_ME_SIG_NUM

init_common#:
	immed[TxSequenceAddr, TX_SEQUENCE_0]
	alu[ring_num, --, B, RING_0, <<2]
	immed[TBuf_Base, RBUF_TBUF]

	alu[sram_channel_number, --, B, CHAN_NUMBER, <<SRAM_CHANNEL_NUMBER_FIELD]
	alu[t0, sram_channel_number, OR, Q_NUMBER, <<SRAM_Q_ARRAY_NUMBER_FIELD]

	br!=ctx[0, wait_for_next_ctx_sig#]

init#:
	immed[@tbuf_element, 0]

	immed[@sramDescBase, (IN_SRAM_DESC_BASE & MASK_16BIT)]
	immed_w1[@sramDescBase, ((IN_SRAM_DESC_BASE >> 16) & MASK_16BIT)]

	immed[@dramPacketBase, (IN_DRAM_PCKT_BASE & MASK_16BIT)]
	immed_w1[@dramPacketBase, ((IN_DRAM_PCKT_BASE >> 16) & MASK_16BIT)]


//****************************************************
// Configure Rx Control
//****************************************************
.begin
	.reg RxControlData $RxControlData MsfAddress
	immed[RxControlData, ((0<<9) | (IN_RX_ELEMENT_SIZE << 2))]
	immed_w1[RxControlData, ((IN_RX_MODE << 6) | (IN_RX_WIDTH << 4) | (IN_RX_PHY << 3) | (0<<1)|(0<<0))]
	alu[$RxControlData, --, B, RxControlData]
	immed[MsfAddress, MSF_RX_CONTROL]
	msf[write, $RxControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
.end


//******************************************************
// Initialize RBUF Freelist by freeing all the elements
//******************************************************
.begin
	.reg temp_val temp_reg

	immed[temp_val, 0]

init_RBUF#:
	alu[temp_reg, --, B, temp_val, <<16]
	msf[fast_wr, --, temp_reg, RBUF_ELEMENT_DONE]
	alu[temp_val, temp_val, +, 1]
	alu[--, IN_RBUF_ELEM_COUNT, -, temp_val]
	bne[init_RBUF#]
.end


//******************************************************
// Configure Rx UP Control
//******************************************************
.begin
	.reg RxUPControlData $RxUPControlData MsfAddress
	immed[RxUPControlData, (UP_CTRL_PP_MODE_PLONE | UP_CTRL_CP_MODE | UP_CTRL_PARITY_ODD | UP_CTRL_CELLSIZE | UP_CTRL_DRTIME)]
//	immed[RxUPControlData, (UP_CTRL_PP_MODE | UP_CTRL_CP_MODE | UP_CTRL_PARITY | UP_CTRL_CELLSIZE | UP_CTRL_DRTIME)]
	alu[$RxUPControlData, --, B, RxUPControlData]
	immed[MsfAddress, RX_UP_CONTROL_0]
	msf[write, $RxUPControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
	immed[MsfAddress, RX_UP_CONTROL_1]
	msf[write, $RxUPControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
	immed[MsfAddress, RX_UP_CONTROL_2]
	msf[write, $RxUPControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
	immed[MsfAddress, RX_UP_CONTROL_3]
	msf[write, $RxUPControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
.end


//****************************************************
// Configure Rx Control
//****************************************************
.begin
	.reg $RxControlData MsfAddress
	immed[MsfAddress, MSF_RX_CONTROL]
	msf[read, $RxControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
	alu[$RxControlData, $RxControlData, OR, IN_RX_ENABLE_MASK, <<28]
	msf[write, $RxControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
.end


//****************************************************
// Configure Tx Control
//****************************************************
.begin
	.reg MsfAddress TxControlData $TxControlData
	immed[MsfAddress, MSF_TX_CONTROL]
	immed[TxControlData, (IN_TX_ELEMENTSIZE << 2)]	// put control and data into diff freelist
	immed_w1[TxControlData, ((IN_TX_ENABLE_MASK << 8) | (IN_TX_MODE << 6) | (IN_TX_WIDTH << 4) | (IN_TX_PHY << 3) | (0<<1)|(1<<0))]
	alu[$TxControlData, --, B, TxControlData]
	msf[write, $TxControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]

	alu[$TxControlData, TxControlData, OR, IN_TX_ENABLE_MASK, <<28]
	msf[write, $TxControlData, MsfAddress, 0, 1], ctx_swap[msf_sig]
.end

		
//****************************************************
// Configure Rx Thread Freelist Timeout
//****************************************************
.begin
	.reg timeout_val
	immed[timeout_val, FREELIST_TIMEOUT_VAL]
	alu[timeout_val,--, B, timeout_val, <<16]		// timeout value 
	msf[fast_wr, --, timeout_val, RX_THREAD_FREELIST_TIMEOUT_0]
	msf[fast_wr, --, timeout_val, RX_THREAD_FREELIST_TIMEOUT_1]
	msf[fast_wr, --, timeout_val, RX_THREAD_FREELIST_TIMEOUT_2]
	msf[fast_wr, --, timeout_val, RX_THREAD_FREELIST_TIMEOUT_3]
.end


//****************************************************
// Set up the freelist (queue)
//****************************************************
.begin
	.reg cellcount freelist sr0
	.reg $s0 $s1 $s2
	.reg tmp
	.sig qa_init addr
	.reg $sr0 $sr1 $sr2 $sr3
	.reg sram_desc_base
	.xfer_order $sr0 $sr1 $sr2 $sr3
	.xfer_order $s0 $s1 $s2

	immed[sram_desc_base, (IN_SRAM_DESC_BASE & MASK_16BIT)]
	immed_w1[sram_desc_base, ((IN_SRAM_DESC_BASE >> 16) & MASK_16BIT)]

	alu[tmp, --, B, CHAN_NUMBER, <<SRAM_CHANNEL_NUMBER_FIELD]
	alu[tmp, tmp, OR, sram_desc_base]
	immed[$s0, 0]
	immed[$s1, 0]
	immed[$s2, 0]
	
	sram[write, $s0, tmp, 0, 3], ctx_swap[qa_init]
	
	alu[tmp, --, B, sram_desc_base]
	alu[tmp, --, B, tmp, >>2]
	sram[rd_qdesc_head, $sr0, t0, tmp, 2], ctx_swap[qa_init]
	sram[rd_qdesc_other, --, t0, tmp]

	immed[freelist, (FREELIST_SIZE & MASK_16BIT)]
	immed_w1[freelist, ((FREELIST_SIZE >> 16) & MASK_16BIT)]
	 
	immed[cellcount, 0x1c, <<16]		//set cell count to 1, set OV EOP, and SOP
	
addfreelist#:
	alu[--, cellcount, OR, 0]
	sram[enqueue,  --, t0, tmp], indirect_ref
	alu[tmp, tmp, +, 1]
	alu[freelist, freelist, -, 1]
	bne[addfreelist#]
.end


//**************************************************
// Configure Scratch Ring
//**************************************************
.begin
	.reg $scratch_base $scratch_head $scratch_tail
	.sig scratch_sig1 scratch_sig2 scratch_sig3

	alu[$scratch_base, --, B, 0x3, <<30]	// Use ring size of 1024 lw and base 0x0
	immed[$scratch_head,0]
	immed[$scratch_tail,0]

	cap[write, $scratch_base, SCRATCH_RING_BASE_0],sig_done[scratch_sig1]
	cap[write, $scratch_head, SCRATCH_RING_HEAD_0],sig_done[scratch_sig2]
	cap[write, $scratch_tail, SCRATCH_RING_TAIL_0],sig_done[scratch_sig3]
	ctx_arb[scratch_sig1, scratch_sig2, scratch_sig3]
.end


//**************************************************
// Signal Receive MEs
//**************************************************
	immed[temp, ((IN_ME_RX_0 << 7) | (IN_SIG_THD_NUM << 4) | (IN_INTER_ME_SIG_NUM << 0))]
	alu[--, --, B, temp]
	cap[fast_wr, ALU, interthread_sig]	// to signal Rx ME that Tx has finished its init

	immed[temp, ((IN_ME_RX_1 << 7) | (IN_SIG_THD_NUM << 4) | (IN_INTER_ME_SIG_NUM << 0))]
	alu[--, --, B, temp]
	cap[fast_wr, ALU, interthread_sig]	// to signal Rx ME that Tx has finished its init

	immed[temp, ((IN_ME_RX_2 << 7) | (IN_SIG_THD_NUM << 4) | (IN_INTER_ME_SIG_NUM << 0))]
	alu[--, --, B, temp]
	cap[fast_wr, ALU, interthread_sig]	// to signal Rx ME that Tx has finished its init

	immed[temp, ((IN_ME_RX_3 << 7) | (IN_SIG_THD_NUM << 4) | (IN_INTER_ME_SIG_NUM << 0))]
	alu[--, --, B, temp]
	cap[fast_wr, ALU, interthread_sig]	// to signal Rx ME that Tx has finished its init
	br[wake_up_next_thread_after_init#]


wait_for_next_ctx_sig#:
	.set_sig next_ctx_sig
	ctx_arb[next_ctx_sig]

wake_up_next_thread_after_init#:
	br=ctx[7, wait_for_assignment#]
	local_csr_wr[SAME_ME_SIGNAL, SIG_CTX_DATA]

wait_for_assignment#:
	.local $scratch_data
	// Get new assignment, i.e. the buf addr from scratch ring
	scratch[get, $scratch_data, ring_num, 0, 1], ctx_swap[scratch_sig]
	alu[--, $scratch_data, -, 0]
	beq[wait_for_assignment#]		// branch to label if there is no new assignment
	alu[buf_addr, --, B, $scratch_data]
	.endlocal

	.local $sram_data
	sram[read, $sram_data, buf_addr, sram_channel_number, 1], sig_done[sram_sig]
	alu[cur_tbuf_elem, --, B, @tbuf_element]
	alu[@tbuf_element, @tbuf_element, +, 1]
	alu[--, IN_TBUF_ELEM_COUNT, -, @tbuf_element]
	bne[wait_for_sram_sig#]
	alu[@tbuf_element, --, B, 0]

wait_for_sram_sig#:
	ctx_arb[sram_sig], defer[1]
	alu[buf_offset, buf_addr, -, @sramDescBase]
	alu[byte_count, --, B, $sram_data, >>4]
	alu[$prepend_data0, MASK_4BIT, AND, $sram_data]		// Port number
	alu[$prepend_data1, --, B, byte_count]
	.endlocal

/*
//*******************************************************

// Read the Transmit Sequence

//*******************************************************

.begin	
	.reg result tmp_val tmp_tbuf $TxSequenceData

read_tx_sequence_loop#:
	msf[read, $TxSequenceData, TxSequenceAddr, 0, 1], ctx_swap[msf_sig]

	alu[result, TBUF_ELEM_COUNT_4PORT_MASK, AND, $TxSequenceData]	// get mpkts actually sent
	alu[tmp_val, TBUF_ELEM_COUNT_4PORT_MASK, AND, cur_tbuf_elem]
	alu[--, tmp_val, -, result]
	bge[cont_comp_tbuf_tx_sequnce#], defer[1]
	alu[tmp_tbuf, --, b, tmp_val]		
	alu[tmp_tbuf, tmp_tbuf, +, TBUF_ELEM_COUNT_4PORT]	// wrap around, add tbuf element number
cont_comp_tbuf_tx_sequnce#:
	alu[result, tmp_tbuf, -, result]			// compare with totals in tbuf
	alu[--, result, -, 8]						// compare with threshold
	bge[read_tx_sequence_loop#] 				// loop again
.end //result tmp_tbuf
*/

//****************************************************
// Move data to TBUF from DRAM
//****************************************************
.begin
	.reg refcnt pkt_buf_addr
	.reg prepend_tbuf_addr

	alu[cur_tbuf_addr, TBuf_Base, OR, cur_tbuf_elem, <<IN_TBUF_ADDR_SHF]

//	alu[prepend_tbuf_addr, --, B, cur_tbuf_addr]
	msf[write64, $prepend_data0, cur_tbuf_addr, 0, 1], sig_done[msf_sig]

	alu[pkt_buf_addr, --, B, buf_offset, <<5]
	alu[pkt_buf_addr, pkt_buf_addr, +, @dramPacketBase]

	alu[cur_tbuf_addr, cur_tbuf_addr, +, PREPEND_LENGTH]
	alu[cur_tbuf_addr, --, B, cur_tbuf_addr, <<5]
	alu[cur_tbuf_addr, cur_tbuf_addr, OR, 1, <<4]		// set the overwrite bit for the TBUF addr
	alu[refcnt, --, B, byte_count, >>3]
	alu[--, byte_count, AND, 0x7]
	bne[refcnt_calc_done#]
	alu[refcnt, refcnt, -, 1]			// Calculate the refcnt for indirect ref
refcnt_calc_done#:
	alu[refcnt, --, B, refcnt, <<21]	// Shift to appropriate bit
	alu[refcnt, refcnt, OR, 1, <<25]	// Set the overwrite bit for refcnt
	alu[--, cur_tbuf_addr, OR, refcnt]	// indirect ref
	dram[tbuf_wr, --, pkt_buf_addr, 0, 8], indirect_ref, sig_done[dram_sig]
	ctx_arb[msf_sig, dram_sig]	
.end


//*******************************************************
// Write the Transmit Control Word with appropriate data
//*******************************************************
.begin 
	.reg MsfAddress

	immed[MsfAddress, TBUF_ELEMENT_CONTROL_V]
	alu[MsfAddress, MsfAddress, OR, cur_tbuf_elem, <<3]

	immed[temp, CSIX_UNICAST]
	alu[temp, temp, OR, PREPEND_LENGTH, <<16]			// prepend length
	alu[$TxControlWord0, temp, OR, byte_count, <<24]	// For Tx Control Word

	immed[temp, (EXT_HDR & MASK_16BIT)]
	immed_w1[temp, ((EXT_HDR >> 16) & MASK_16BIT)]
	alu[$TxControlWord1, --, B, temp]		 			// Setting extension header

	msf[write, $TxControlWord0, MsfAddress, 0, 2], ctx_swap[msf_sig]
.end


//*******************************************************
// Free buffer
//*******************************************************
.begin
	.reg temp cellcount

	alu[temp, --, B, buf_addr, >>2]
	immed[cellcount, 0x1c, <<16]		// set OV EOP, and SOP
	
	alu[--, cellcount, OR, 0]
	sram[enqueue,  --, t0, temp], indirect_ref
.end


	br[wait_for_assignment#]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -