⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 xscale_test.c

📁 基于ecos的redboot
💻 C
📖 第 1 页 / 共 4 页
字号:
*
* Memory tests can be run one of two ways - with the cache turned OFF to test
* physical memory, or with cache turned ON to test the caching
*/
static void special_mem_test (void)
{
    long	start_addr;
    long	mem_size;
    long	end_addr;

	printf ("Base address of memory to test (in hex): ");
    start_addr = hexIn();
    printf("\n");
    printf ("Size of memory to test (in hex): ");
    mem_size = hexIn();
    printf("\n");
    end_addr = start_addr + mem_size;

    printf("Testing memory from $");
    hex32out(start_addr);
    printf(" to $");
    hex32out(end_addr);
    printf(".\n");
    LoopMemTest(start_addr, end_addr);
    printf("\n");

    printf ("\nMemory test done.\n");
    printf ("Press return to continue.\n");
    (void) xgetchar();
}

/* sequential test for LSD and MSD 7 segment Leds */
void seven_segment_display (void)
{

	unsigned char SevSegDecode;
	int DisplaySequence;
	int SelectLed;

/* 02/07/01 jwf */
/*	const unsigned long TIME_OUT=6000000;*/
/* 02/02/01 jwf */
/*	unsigned long Dwell;*/
/*	volatile unsigned long Dwell;*/

	*( unsigned char * ) 0xfe840000 = DISPLAY_OFF;		/* blank MSD 7 segment LEDS */

	*( unsigned char * ) 0xfe850000 = DISPLAY_OFF;		/* blank LSD 7 segment LEDS  */


	SelectLed=0; /* initialize 7 segment LED selection */
	
	do
	{
			/* run test data sequence for a 7 segment LED */
		for (DisplaySequence = 0; DisplaySequence <= 17; ++DisplaySequence )
		{
				/* fetch 7 segment decode byte */
			switch( DisplaySequence )
			{
				case 0:
					SevSegDecode = ZERO;	
					break;

				case 1:
					SevSegDecode = ONE;
					break;

				case 2:
					SevSegDecode = TWO;
					break;

				case 3:
					SevSegDecode = THREE;
					break;

				case 4:
					SevSegDecode = FOUR;
					break;

				case 5:
					SevSegDecode = FIVE;
					break;

				case 6:
					SevSegDecode = SIX;
					break;

				case 7:
					SevSegDecode = SEVEN;
					break;

				case 8:
					SevSegDecode = EIGHT;
					break;

				case 9:
					SevSegDecode = NINE;
					break;
				
				case 10:
					SevSegDecode = LETTER_A;
					break;

				case 11:
					SevSegDecode = LETTER_B;
					break;

				case 12:
					SevSegDecode = LETTER_C;
					break;
				
				case 13:
					SevSegDecode = LETTER_D;
					break;
				
				case 14:
					SevSegDecode = LETTER_E;
					break;

				case 15:
					SevSegDecode = LETTER_F;
					break;

				case 16:
					SevSegDecode = DECIMAL_POINT;
					break;

				case 17:
					SevSegDecode = DISPLAY_OFF;
				
				default:
					break;

			} /* end switch( DisplaySequence ) */

		
			/* display test data on selected 7 segment LED */
			/* the test data sequence for a 7 segment led will be seen as:*/
			/* 0 1 2 3 4 5 6 7 8 9 A b C d e F . */
			switch( SelectLed )
			{
				case 0:
					*( unsigned char * ) 0xfe850000 = SevSegDecode;		/* write value on 7 segment LSD LED display */;	
					break;

				case 1:
					*( unsigned char * ) 0xfe840000 = SevSegDecode;		/* write value on 7 segment MSD LED display */;	
					break;

				default:
					break;
			} /* end switch( SelectLed ) */

/* 02/07/01 jwf */
			/* time delay, allows user enough time to read a value on display */
/*			for (Dwell=TIME_OUT; Dwell > 0; --Dwell );*/
			time_delay (0x325aa0, 4);/* Delay 0.4 second. Load counter with a 100ms count down (3300000)d per timer interrupt, 5 timer interrupts */

		} /* end for(DisplaySequence~) */

		++SelectLed;	/* select next 7 segment LED */
	}
	while (SelectLed < 2);	 /* tests a pair of 7 segment LEDs */

	*( unsigned char * ) 0xfe840000 = LETTER_S;	/* show S on the 7 segment MSD LED */
	*( unsigned char * ) 0xfe850000 = LETTER_S;	/* show S on the 7 segment LSD LED */
} /* end seven_segment_display() */


/* 12/18/00 jwf */
/* tests rotary switch status, S1 positions 0-3, a 2 bit output code */
void rotary_switch (void)
{

		/* CYGMON serial port J9 */
	unsigned char recv_data;	/* RHR */
	unsigned char recv_lsr;		/* LSR */

	const unsigned char MAX_SWITCH_SAMPLES = 9;
	unsigned char RotarySwitch[MAX_SWITCH_SAMPLES];	/* holds multiple samples of a 4 bit switch code */
	unsigned char index;									/* index for Rotary Switch array */
	unsigned char debounce;									/* keeps tally of equal rotary switch data reads in a loop */
	unsigned char SevSegDecode;					/* holds decode data for a 7 segment LED display */

	char board_rev;	/* holds a Board Revision number */

/* 02/07/01 jwf */
/*	const unsigned long TIME_OUT = 4000000;*/
/* 02/02/01 jwf */
/*	volatile unsigned int Dwell;*/

	*( unsigned char * ) 0xfe840000 = DISPLAY_OFF;	/* turn off the 7 segment MSD LED */
	*( unsigned char * ) 0xfe850000 = DISPLAY_OFF;	/* turn off the 7 segment LSD LED */

	board_rev= board_revision ();			/* Determine Board Revision Number */
	if (board_rev >= BOARD_REV_E)			/* Board Rev is at E or higher */
	{
		printf("\n\nThe 7-Segment LSD LED shows the Rotary Switch position selected, i.e., 0-F.");
		printf("\n\nSlowly dial the Rotary Switch through each position 0-F and confirm reading.");
	}
	else			/* Unknown Board Revision, might be D or B or A. */
	{
		printf("\n\nThe 7-Segment LSD LED shows the Rotary Switch position selected, i.e., 0-3.");
		printf("\n\nSlowly dial the Rotary Switch through each position 0-3 and confirm reading.");
	}

	printf( "\n\nStrike <CR> to exit this test." );
	while ( recv_data != 0x0d )	/* run until User types a <CR> to exit */
	{
	
		do	/* debounce the switch contacts */
		{
			for(index = 0; index <=	MAX_SWITCH_SAMPLES; index++)		/* sample rotary switch code */
			{
				RotarySwitch[index] = *( unsigned char * ) 0xfe8d0000;	/* read rotary switch code */
				RotarySwitch[index] &= 0x0f;							/* mask out bits b7-b4, preserve bits b0-b3 */
			}
			debounce = 0;
			for(index = 1; index <=	MAX_SWITCH_SAMPLES; index++)		/* test rotary switch code samples */
			{
				if (RotarySwitch[0] == RotarySwitch[index])
					debounce++;											/* keep tally of equal rotary switch code samples */
			}
		}
		while ( debounce < (MAX_SWITCH_SAMPLES - 1) );	/* exit when all rotary switch code readings are equal, when debounce = MAX_SWITCH_SAMPLES-1 */

			/* decipher state of rotary switch position */
		switch( RotarySwitch[0] )
			/* examine rotary switch position then display its position number on the 7 segment LSD LED  */
		{
			case 0x00:
				SevSegDecode = ZERO;	
				break;

			case 0x01:
				SevSegDecode = ONE;
				break;

			case 0x02:
				SevSegDecode = TWO;
				break;

			case 0x03:
				SevSegDecode = THREE;
				break;

			case 0x4:
				SevSegDecode = FOUR;
				break;

			case 0x5:
				SevSegDecode = FIVE;
				break;

			case 0x6:
				SevSegDecode = SIX;
				break;

			case 0x7:
				SevSegDecode = SEVEN;
				break;

			case 0x8:
				SevSegDecode = EIGHT;
				break;

			case 0x9:
				SevSegDecode = NINE;
				break;
			
			case 0xa:
				SevSegDecode = LETTER_A;
				break;

			case 0xb:
				SevSegDecode = LETTER_B;
				break;

			case 0xc:
				SevSegDecode = LETTER_C;
				break;
			
			case 0xd:
				SevSegDecode = LETTER_D;
				break;
			
			case 0xe:
				SevSegDecode = LETTER_E;
				break;

			case 0xf:
				SevSegDecode = LETTER_F;
				break;

			default:
				SevSegDecode = DECIMAL_POINT;
				break;
		}

		*( unsigned char * ) 0xfe850000 = SevSegDecode;			/* display the rotary switch position on the 7 segment LSD LED as: 0, 1, 2, 3 */

		recv_lsr = *(volatile unsigned char *) 0xfe810005;		/* read J9 serial port LSR */
		recv_lsr &= 0x1;
		if ( recv_lsr == 0x1)									/* a character is ready in receiver buffer */
		{
			recv_data = *(volatile unsigned char *) 0xfe810000;	/* read character from J9 serial port receiver buffer */
		}
/* 02/07/01 jwf */
/*		for (Dwell=TIME_OUT; Dwell > 0; --Dwell );*/
		time_delay (0x325aa0, 2);/* Delay 0.2 second. Load counter with a 100ms count down (3300000)d per timer interrupt, 2 timer interrupts */
	}

	*( unsigned char * ) 0xfe840000 = LETTER_S;	/* show S on the 7 segment MSD LED */
	*( unsigned char * ) 0xfe850000 = LETTER_S;	/* show S on the 7 segment LSD LED */

} /* end rotary_switch() */


/* test backplane detection, connector socket J19 pin 7 */
/* BP_DET#=0, no backplane */
/* BP_DET#=1, backplane installed */
/* b0 <--> BP_DET# */
void backplane_detection(void)
{
	unsigned char BpDetStatus;	/* L = pci700 board installed on backplane */

	BpDetStatus = *( unsigned char * ) 0xfe870000;	/* read backplane detection status port */

	BpDetStatus &= 0x01;		/* isolate bit b0 */

			/* examine bit 0 */
	switch( BpDetStatus )

	{
		case 0x00:		/* BpDetStatus = !(BP_DET#=1) = 0 */
			printf("\nBackplane detection bit read Low, no backplane installed\n");
			printf("\nPlace a jumper across J19.7 to J19.1, then run this test again.\n");
			break;

		case 0x01:		/* BpDetStatus = !(BP_DET#=0) = 1 */
			printf("\nBackplane detection bit read High, 1 backplane detected.\n");
			printf("\nRemove jumper from J19\n");
			break;

		default:
			break;
	}

/* 12/18/00 jwf */
	printf ("\n\nStrike <CR> to exit this test.\n\n");
	hexIn();

}


/* test battery status */
/* b0 - !(BATT_PRES#=0). A battery is installed.*/
/* b1 - BATT_CHRG=1. The battery is fully charged. */
/* b2 - BATT_DISCHRG=1. The battery is fully discharged. */
void battery_status(void)
{
	unsigned char BatteryStatus;

	unsigned char TestBit;

	BatteryStatus = *( unsigned char * ) 0xfe8f0000;	/* read battery status port */

	BatteryStatus &= 0x07;	/* isolate bits b0, b1, and b2 */

	TestBit = BatteryStatus;

	/* examine bit b0 BATT_PRES# */

	TestBit &= 0x01;

	if (TestBit == 0x01)	/* TestBit=!(BATT_PRES#=0)=1 */
	{

		printf("\nBATT_PRES#=0. A battery was detected.\n");
	}

	else	/* TestBit=!(BATT_PRES#=1)=0 */
	{
	
		printf("\nBATT_PRES#=1. No battery installed.\n");	/* skip testing bits b2 and b3 (BATT_CHRG and BATT_DISCHRG) here since no battery is installed yet */
	}

		/* examine bit b1 BATT_CHRG */
	TestBit |= BatteryStatus;
	
	TestBit &= 0x02;
	
	if (TestBit == 0x02)	/* BATT_CHRG=1 */ /* Assume V_BATT float=4.2V, then 1.2V<V(U20.5)<=1.33V so V_BATT>3.78V,*/
			
		printf("\nBATT_CHRG=1. Battery is fully charged.\n");

	else					/* BATT_CHRG=0 */ /* Assume V_BATT float=4.2V, then V(U20.5)<=1.2V so V_BATT<=3.78V */

		printf("\nBATT_CHRG=0. Battery is charging.\n");


		/* examine bit b2 BATT_DISCHRG */
	TestBit |= BatteryStatus;
	
	TestBit &= 0x04;
	

	if (TestBit == 0x04)		/* BATT_DISCHRG=1 */ /* Assume V_BATT float=4.2V, then V(U30.2)=<1.2V so V_BATT<=3.0V */
			
		printf("\nBATT_DISCHRG=1. Battery is fully discharged.\n");

	else						/* BATT_DISCHRG=0 */ /*  Assume V_BATT float=4.2V, then 1.2V<V(U30.2)=<1.68V so V_BATT>3.0V */ 

		printf("\nBATT_DISCHRG=0. Battery voltage measures with in normal operating range.\n");

	printf ("\n\nStrike <CR> to exit this test.\n\n");
	
	hexIn();

}






/* GPIO test */
/* Header J16 pin out is: J16.1=b0, J16.3=b1, J16.5=b2, J16.7=b3, J16.9=b4, J16.11=b5, J16.13=b6, J16.15=b7 */
/* This test will require use of 2 special test sockets wired as follows for the output and input tests. */
/* Intel specifies that each GPIO pin must be pulled down after P_RST# deasserts to swamp out their weak internal active pull up */
/* Note that the internal weak active pull up tends to have more of an affect on the GPIO input port rather than the output port */
/* Therefore for the input test, jumper J16 pins: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16, and (TBD) provide an input source for each bit */
/* For the output test, jumper J16 pins: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, 15-16 */
/* each jumpered pin connects a weak pull down resistor, resident on board, to each GPIO pin */
void gpio_test (void)
{
	/*unsigned char GpioInputPort;*/
	unsigned char GpioOutputPort;
	unsigned char GpioOutputEnablePort;

	/* GPIO output port test */

	printf("\n\nPlug output test socket into header J16, strike 'Enter' to continue" );
	while(xgetchar()!=0x0d);

	/* write test data pattern to GPIO Output Enable Register at address 0x0000171c */
	*( unsigned char * ) 0x0000171c = 0x55;

	/* read GPIO Output Enable Register from address 0x0000171c */
	GpioOutputEnablePort = *( unsigned char * ) 0x0000171c;

	if (GpioOutputEnablePort==0x55)
		printf("\nGPIO Output Enable first write/read test PASSED.");
	else
		printf("\nGPIO Output Enable first write/read test FAILED.");

/*
	printf("\n\nStrike Enter to continue" );
	printf("\n0x55" );
	while(xgetchar()!=0x0d);
*/
	
	/* write test data pattern to GPIO Output Enable Register at address 0x0000171c */
	*( unsigned char * ) 0x0000171c = 0xaa;

	/* read GPIO Output Enable Register from address 0x0000171c */
	GpioOutputEnablePort = *( unsigned char * ) 0x0000171c;

	if (GpioOutputEnablePort==0xaa)
		printf("\nGPIO Output Enable second write/read test PASSED.");
	else
		printf("\nGPIO Output Enable second write/read test FAILED.");


	
	/* enable output bits b0-b7, write test pattern to GPIO Output Enable Register at address 0x0000171c */
	*( unsigned char * ) 0x0000171c = 0x00;
	
	/* write test data pattern to GPIO Output Data Register at address 00001724h */
	*( unsigned char * ) 0x00001724 = 0x55;
	
	/* read test data pattern from GPIO Output Data Register at address 00001724h */
	GpioOutputPort = *( unsigned char * ) 0x00001724;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -