📄 hal_diag.c
字号:
/*=============================================================================
//
// hal_diag.c
//
// HAL diagnostic output code
//
//=============================================================================
//####COPYRIGHTBEGIN####
//
// -------------------------------------------
// The contents of this file are subject to the Red Hat eCos Public License
// Version 1.1 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://www.redhat.com/
//
// Software distributed under the License is distributed on an "AS IS"
// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
// License for the specific language governing rights and limitations under
// the License.
//
// The Original Code is eCos - Embedded Configurable Operating System,
// released September 30, 1998.
//
// The Initial Developer of the Original Code is Red Hat.
// Portions created by Red Hat are
// Copyright (C) 1998, 1999, 2000 Red Hat, Inc.
// All Rights Reserved.
// -------------------------------------------
//
//####COPYRIGHTEND####
//=============================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): gthomas
// Contributors:nickg, gthomas, dmoseley
// Travis C. Furrer <furrer@mit.edu>
// Date: 2000-05-08
// Purpose: HAL diagnostic output
// Description: Implementations of HAL diagnostic output support.
//
//####DESCRIPTIONEND####
//
//===========================================================================*/
#include <pkgconf/hal.h>
#include <pkgconf/system.h>
#include CYGBLD_HAL_PLATFORM_H
#include <cyg/infra/cyg_type.h> // base types
#include <cyg/infra/cyg_trac.h> // tracing macros
#include <cyg/infra/cyg_ass.h> // assertion macros
#include <cyg/hal/hal_arch.h> // basic machine info
#include <cyg/hal/hal_intr.h> // interrupt macros
#include <cyg/hal/hal_io.h> // IO macros
#include <cyg/hal/hal_if.h> // Calling interface definitions
#include <cyg/hal/hal_diag.h>
#include <cyg/hal/drv_api.h> // cyg_drv_interrupt_acknowledge
#include <cyg/hal/hal_misc.h> // Helper functions
#include <cyg/hal/hal_sa11x0.h> // Hardware definitions
struct sa11x0_serial {
volatile cyg_uint32 utcr0;
volatile cyg_uint32 utcr1;
volatile cyg_uint32 utcr2;
volatile cyg_uint32 utcr3;
volatile cyg_uint32 pad0010;
volatile cyg_uint32 utdr;
volatile cyg_uint32 pad0018;
volatile cyg_uint32 utsr0;
volatile cyg_uint32 utsr1;
};
//-----------------------------------------------------------------------------
typedef struct {
volatile struct sa11x0_serial* base;
cyg_int32 msec_timeout;
int isr_vector;
int baud_rate;
} channel_data_t;
/*---------------------------------------------------------------------------*/
// SA11x0 Serial Port (UARTx) for Debug
static void
init_channel(channel_data_t* __ch_data)
{
volatile struct sa11x0_serial* base = __ch_data->base;
cyg_uint32 brd;
// Disable Receiver and Transmitter (clears FIFOs)
base->utcr3 = SA11X0_UART_RX_DISABLED | SA11X0_UART_TX_DISABLED;
// Clear sticky (writable) status bits.
base->utsr0 = SA11X0_UART_RX_IDLE | SA11X0_UART_RX_BEGIN_OF_BREAK |
SA11X0_UART_RX_END_OF_BREAK;
#if defined(CYGPKG_HAL_ARM_SA11X0_SA1100MM) || defined(CYGPKG_HAL_ARM_SA11X0_BRUTUS)
// This setup is specific to only a few boards.
if (SA11X0_UART1_BASE == (volatile unsigned long *)base) {
cyg_uint32 pdr, afr, par;
HAL_READ_UINT32(SA11X0_GPIO_PIN_DIRECTION, pdr);
HAL_READ_UINT32(SA11X0_GPIO_ALTERNATE_FUNCTION, afr);
HAL_READ_UINT32(SA11X0_PPC_PIN_ASSIGNMENT, par);
//Set pin 14 as an output (Tx) and pin 15 as in input (Rx).
HAL_WRITE_UINT32(SA11X0_GPIO_PIN_DIRECTION, ((pdr | SA11X0_GPIO_PIN_14) & ~SA11X0_GPIO_PIN_15));
// Use GPIO 14 & 15 pins for serial port 1.
HAL_WRITE_UINT32(SA11X0_GPIO_ALTERNATE_FUNCTION, afr | SA11X0_GPIO_PIN_14 | SA11X0_GPIO_PIN_15);
// Pin reassignment for serial port 1.
HAL_WRITE_UINT32(SA11X0_PPC_PIN_ASSIGNMENT, par | SA11X0_PPC_UART_PIN_REASSIGNMENT_MASK);
}
#endif
// Set UART to 8N1 (8 data bits, no partity, 1 stop bit)
base->utcr0 = SA11X0_UART_PARITY_DISABLED | SA11X0_UART_STOP_BITS_1 |
SA11X0_UART_DATA_BITS_8;
// Set the desired baud rate.
brd = SA11X0_UART_BAUD_RATE_DIVISOR(__ch_data->baud_rate);
base->utcr1 = (brd >> 8) & SA11X0_UART_H_BAUD_RATE_DIVISOR_MASK;
base->utcr2 = brd & SA11X0_UART_L_BAUD_RATE_DIVISOR_MASK;
// Enable the receiver and the transmitter.
base->utcr3 = SA11X0_UART_RX_ENABLED | SA11X0_UART_TX_ENABLED;
// All done
}
void
cyg_hal_plf_serial_putc(void *__ch_data, char c)
{
volatile struct sa11x0_serial* base = ((channel_data_t*)__ch_data)->base;
CYGARC_HAL_SAVE_GP();
// Wait for Tx FIFO not full
while ((base->utsr1 & SA11X0_UART_TX_FIFO_NOT_FULL) == 0)
;
base->utdr = c;
CYGARC_HAL_RESTORE_GP();
}
// FIXME: shouldn't we check for PARITY_ERROR, FRAMING_ERROR, or
// RECEIVE_FIFO_OVERRUN_ERROR in the received data? This
// means check the appropriate bits in UTSR1.
static cyg_bool
cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch)
{
volatile struct sa11x0_serial* base = ((channel_data_t*)__ch_data)->base;
// If receive fifo is empty, return false
if ((base->utsr1 & SA11X0_UART_RX_FIFO_NOT_EMPTY) == 0)
return false;
*ch = (char)base->utdr;
// Clear receiver idle status bit, to allow another interrupt to
// occur in the case where the receive fifo is almost empty.
base->utsr0 = SA11X0_UART_RX_IDLE;
return true;
}
cyg_uint8
cyg_hal_plf_serial_getc(void* __ch_data)
{
cyg_uint8 ch;
CYGARC_HAL_SAVE_GP();
while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch));
CYGARC_HAL_RESTORE_GP();
return ch;
}
static channel_data_t ser_channels[] = {
#if CYGHWR_HAL_ARM_SA11X0_UART1 != 0
{ (volatile struct sa11x0_serial*)SA11X0_UART1_BASE, 1000,
CYGNUM_HAL_INTERRUPT_UART1, CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD },
#endif
#if CYGHWR_HAL_ARM_SA11X0_UART3 != 0
{ (volatile struct sa11x0_serial*)SA11X0_UART3_BASE, 1000,
CYGNUM_HAL_INTERRUPT_UART3, CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD },
#endif
};
static void
cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf,
cyg_uint32 __len)
{
CYGARC_HAL_SAVE_GP();
while(__len-- > 0)
cyg_hal_plf_serial_putc(__ch_data, *__buf++);
CYGARC_HAL_RESTORE_GP();
}
static void
cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len)
{
CYGARC_HAL_SAVE_GP();
while(__len-- > 0)
*__buf++ = cyg_hal_plf_serial_getc(__ch_data);
CYGARC_HAL_RESTORE_GP();
}
cyg_bool
cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch)
{
int delay_count;
channel_data_t* chan = (channel_data_t*)__ch_data;
cyg_bool res;
CYGARC_HAL_SAVE_GP();
delay_count = chan->msec_timeout * 10; // delay in .1 ms steps
for(;;) {
res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch);
if (res || 0 == delay_count--)
break;
CYGACC_CALL_IF_DELAY_US(100);
}
CYGARC_HAL_RESTORE_GP();
return res;
}
static int
cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...)
{
static int irq_state = 0;
channel_data_t* chan = (channel_data_t*)__ch_data;
int ret = -1;
va_list ap;
CYGARC_HAL_SAVE_GP();
va_start(ap, __func);
switch (__func) {
case __COMMCTL_GETBAUD:
ret = chan->baud_rate;
break;
case __COMMCTL_SETBAUD:
chan->baud_rate = va_arg(ap, cyg_int32);
init_channel(chan);
break;
case __COMMCTL_IRQ_ENABLE:
irq_state = 1;
chan->base->utcr3 |= SA11X0_UART_RX_FIFO_INT_ENABLED;
HAL_INTERRUPT_UNMASK(chan->isr_vector);
break;
case __COMMCTL_IRQ_DISABLE:
ret = irq_state;
irq_state = 0;
chan->base->utcr3 &= ~SA11X0_UART_RX_FIFO_INT_ENABLED;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -