📄 stlastar.h
字号:
} // end else (not goal so expand)
return m_State; // Succeeded bool is false at this point.
}
// User calls this to add a successor to a list of successors
// when expanding the search frontier
bool AddSuccessor( UserState &State )
{
Node *node = AllocateNode();
if( node )
{
node->m_UserState = State;
m_Successors.push_back( node );
return true;
}
return false;
}
// Free the solution nodes
// This is done to clean up all used Node memory when you are done with the
// search
void FreeSolutionNodes()
{
Node *n = m_Start;
if( m_Start->child )
{
do
{
Node *del = n;
n = n->child;
FreeNode( del );
del = NULL;
} while( n != m_Goal );
FreeNode( n ); // Delete the goal
}
else
{
// if the start node is the solution we need to just delete the start and goal
// nodes
FreeNode( m_Start );
FreeNode( m_Goal );
}
}
// Functions for traversing the solution
// Get start node
UserState *GetSolutionStart()
{
m_CurrentSolutionNode = m_Start;
if( m_Start )
{
return &m_Start->m_UserState;
}
else
{
return NULL;
}
}
// Get next node
UserState *GetSolutionNext()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->child )
{
Node *child = m_CurrentSolutionNode->child;
m_CurrentSolutionNode = m_CurrentSolutionNode->child;
return &child->m_UserState;
}
}
return NULL;
}
// Get end node
UserState *GetSolutionEnd()
{
m_CurrentSolutionNode = m_Goal;
if( m_Goal )
{
return &m_Goal->m_UserState;
}
else
{
return NULL;
}
}
// Step solution iterator backwards
UserState *GetSolutionPrev()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->parent )
{
Node *parent = m_CurrentSolutionNode->parent;
m_CurrentSolutionNode = m_CurrentSolutionNode->parent;
return &parent->m_UserState;
}
}
return NULL;
}
// For educational use and debugging it is useful to be able to view
// the open and closed list at each step, here are two functions to allow that.
UserState *GetOpenListStart()
{
float f,g,h;
return GetOpenListStart( f,g,h );
}
UserState *GetOpenListStart( float &f, float &g, float &h )
{
iterDbgOpen = m_OpenList.begin();
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetOpenListNext()
{
float f,g,h;
return GetOpenListNext( f,g,h );
}
UserState *GetOpenListNext( float &f, float &g, float &h )
{
iterDbgOpen++;
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetClosedListStart()
{
float f,g,h;
return GetClosedListStart( f,g,h );
}
UserState *GetClosedListStart( float &f, float &g, float &h )
{
iterDbgClosed = m_ClosedList.begin();
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
UserState *GetClosedListNext()
{
float f,g,h;
return GetClosedListNext( f,g,h );
}
UserState *GetClosedListNext( float &f, float &g, float &h )
{
iterDbgClosed++;
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
// Get the number of steps
int GetStepCount() { return m_Steps; }
void EnsureMemoryFreed()
{
#if USE_FSA_MEMORY
assert(m_AllocateNodeCount == 0);
#endif
}
private: // methods
// This is called when a search fails or is cancelled to free all used
// memory
void FreeAllNodes()
{
// iterate open list and delete all nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
FreeNode( n );
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
FreeNode( n );
}
m_ClosedList.clear();
// delete the goal
FreeNode(m_Goal);
}
// This call is made by the search class when the search ends. A lot of nodes may be
// created that are still present when the search ends. They will be deleted by this
// routine once the search ends
void FreeUnusedNodes()
{
// iterate open list and delete unused nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
}
m_ClosedList.clear();
}
// Node memory management
Node *AllocateNode()
{
#if !USE_FSA_MEMORY
Node *p = new Node;
return p;
#else
Node *address = m_FixedSizeAllocator.alloc();
if( !address )
{
return NULL;
}
m_AllocateNodeCount ++;
Node *p = new (address) Node;
return p;
#endif
}
void FreeNode( Node *node )
{
m_AllocateNodeCount --;
#if !USE_FSA_MEMORY
delete node;
#else
m_FixedSizeAllocator.free( node );
#endif
}
private: // data
// Heap (simple vector but used as a heap, cf. Steve Rabin's game gems article)
vector< Node *> m_OpenList;
// Closed list is a vector.
vector< Node * > m_ClosedList;
// Successors is a vector filled out by the user each type successors to a node
// are generated
vector< Node * > m_Successors;
// State
unsigned int m_State;
// Counts steps
int m_Steps;
// Start and goal state pointers
Node *m_Start;
Node *m_Goal;
Node *m_CurrentSolutionNode;
// Memory
FixedSizeAllocator<Node> m_FixedSizeAllocator;
//Debug : need to keep these two iterators around
// for the user Dbg functions
typename vector< Node * >::iterator iterDbgOpen;
typename vector< Node * >::iterator iterDbgClosed;
// debugging : count memory allocation and free's
int m_AllocateNodeCount;
bool m_CancelRequest;
};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -