📄 sha2.cpp
字号:
/* the following 32-bit length fields are assembled in the */
/* wrong byte order on little endian machines but this is */
/* corrected later since they are only ever used as 32-bit */
/* word values. */
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
ctx->wbuf[15] = ctx->count[0] << 3;
sha256_compile(ctx);
/* extract the hash value as bytes in case the hash buffer is */
/* mislaigned for 32-bit words */
for(i = 0; i < SHA256_DIGEST_SIZE; ++i)
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> 8 * (~i & 3));
}
void sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha256_ctx cx[1];
sha256_begin(cx); sha256_hash(data, len, cx); sha256_end(hval, cx);
}
#endif
#if defined(SHA_2) || defined(SHA_384) || defined(SHA_512)
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
#if !defined(bswap_64)
#define bswap_64(x) (((sha2_64t)(bswap_32((sha2_32t)(x)))) << 32 | bswap_32((sha2_32t)((x) >> 32)))
#endif
#if defined(SWAP_BYTES)
#define bsw_64(p,n) { int _i = (n); while(_i--) p[_i] = bswap_64(p[_i]); }
#else
#define bsw_64(p,n)
#endif
/* SHA512 mixing function definitions */
#define s512_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
#define s512_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
#define g512_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
#define g512_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
/* rotated SHA512 round definition. Rather than swapping variables as in */
/* FIPS-180, different variables are 'rotated' on each round, returning */
/* to their starting positions every eight rounds */
#define h5(i) ctx->wbuf[i & 15] += \
g512_1(ctx->wbuf[(i + 14) & 15]) + ctx->wbuf[(i + 9) & 15] + g512_0(ctx->wbuf[(i + 1) & 15])
#define h5_cycle(i,j) \
v[(7 - i) & 7] += (j ? h5(i) : ctx->wbuf[i & 15]) + k512[i + j] \
+ s512_1(v[(4 - i) & 7]) + ch(v[(4 - i) & 7], v[(5 - i) & 7], v[(6 - i) & 7]); \
v[(3 - i) & 7] += v[(7 - i) & 7]; \
v[(7 - i) & 7] += s512_0(v[(0 - i) & 7]) + maj(v[(0 - i) & 7], v[(1 - i) & 7], v[(2 - i) & 7])
/* SHA384/SHA512 mixing data */
const sha2_64t k512[80] =
{
n_u64(428a2f98d728ae22), n_u64(7137449123ef65cd),
n_u64(b5c0fbcfec4d3b2f), n_u64(e9b5dba58189dbbc),
n_u64(3956c25bf348b538), n_u64(59f111f1b605d019),
n_u64(923f82a4af194f9b), n_u64(ab1c5ed5da6d8118),
n_u64(d807aa98a3030242), n_u64(12835b0145706fbe),
n_u64(243185be4ee4b28c), n_u64(550c7dc3d5ffb4e2),
n_u64(72be5d74f27b896f), n_u64(80deb1fe3b1696b1),
n_u64(9bdc06a725c71235), n_u64(c19bf174cf692694),
n_u64(e49b69c19ef14ad2), n_u64(efbe4786384f25e3),
n_u64(0fc19dc68b8cd5b5), n_u64(240ca1cc77ac9c65),
n_u64(2de92c6f592b0275), n_u64(4a7484aa6ea6e483),
n_u64(5cb0a9dcbd41fbd4), n_u64(76f988da831153b5),
n_u64(983e5152ee66dfab), n_u64(a831c66d2db43210),
n_u64(b00327c898fb213f), n_u64(bf597fc7beef0ee4),
n_u64(c6e00bf33da88fc2), n_u64(d5a79147930aa725),
n_u64(06ca6351e003826f), n_u64(142929670a0e6e70),
n_u64(27b70a8546d22ffc), n_u64(2e1b21385c26c926),
n_u64(4d2c6dfc5ac42aed), n_u64(53380d139d95b3df),
n_u64(650a73548baf63de), n_u64(766a0abb3c77b2a8),
n_u64(81c2c92e47edaee6), n_u64(92722c851482353b),
n_u64(a2bfe8a14cf10364), n_u64(a81a664bbc423001),
n_u64(c24b8b70d0f89791), n_u64(c76c51a30654be30),
n_u64(d192e819d6ef5218), n_u64(d69906245565a910),
n_u64(f40e35855771202a), n_u64(106aa07032bbd1b8),
n_u64(19a4c116b8d2d0c8), n_u64(1e376c085141ab53),
n_u64(2748774cdf8eeb99), n_u64(34b0bcb5e19b48a8),
n_u64(391c0cb3c5c95a63), n_u64(4ed8aa4ae3418acb),
n_u64(5b9cca4f7763e373), n_u64(682e6ff3d6b2b8a3),
n_u64(748f82ee5defb2fc), n_u64(78a5636f43172f60),
n_u64(84c87814a1f0ab72), n_u64(8cc702081a6439ec),
n_u64(90befffa23631e28), n_u64(a4506cebde82bde9),
n_u64(bef9a3f7b2c67915), n_u64(c67178f2e372532b),
n_u64(ca273eceea26619c), n_u64(d186b8c721c0c207),
n_u64(eada7dd6cde0eb1e), n_u64(f57d4f7fee6ed178),
n_u64(06f067aa72176fba), n_u64(0a637dc5a2c898a6),
n_u64(113f9804bef90dae), n_u64(1b710b35131c471b),
n_u64(28db77f523047d84), n_u64(32caab7b40c72493),
n_u64(3c9ebe0a15c9bebc), n_u64(431d67c49c100d4c),
n_u64(4cc5d4becb3e42b6), n_u64(597f299cfc657e2a),
n_u64(5fcb6fab3ad6faec), n_u64(6c44198c4a475817)
};
/* Compile 64 bytes of hash data into SHA384/SHA512 digest value */
void sha512_compile(sha512_ctx ctx[1])
{ sha2_64t v[8];
sha2_32t j;
memcpy(v, ctx->hash, 8 * sizeof(sha2_64t));
for(j = 0; j < 80; j += 16)
{
h5_cycle( 0, j); h5_cycle( 1, j); h5_cycle( 2, j); h5_cycle( 3, j);
h5_cycle( 4, j); h5_cycle( 5, j); h5_cycle( 6, j); h5_cycle( 7, j);
h5_cycle( 8, j); h5_cycle( 9, j); h5_cycle(10, j); h5_cycle(11, j);
h5_cycle(12, j); h5_cycle(13, j); h5_cycle(14, j); h5_cycle(15, j);
}
ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
}
/* Compile 128 bytes of hash data into SHA256 digest value */
/* NOTE: this routine assumes that the byte order in the */
/* ctx->wbuf[] at this point is in such an order that low */
/* address bytes in the ORIGINAL byte stream placed in this */
/* buffer will now go to the high end of words on BOTH big */
/* and little endian systems */
void sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
{ sha2_32t pos = (sha2_32t)(ctx->count[0] & SHA512_MASK),
space = SHA512_BLOCK_SIZE - pos;
const unsigned char *sp = data;
if((ctx->count[0] += len) < len)
++(ctx->count[1]);
while(len >= space) /* tranfer whole blocks while possible */
{
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
sha512_compile(ctx);
}
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}
/* SHA384/512 Final padding and digest calculation */
static sha2_64t m2[8] =
{
n_u64(0000000000000000), n_u64(ff00000000000000),
n_u64(ffff000000000000), n_u64(ffffff0000000000),
n_u64(ffffffff00000000), n_u64(ffffffffff000000),
n_u64(ffffffffffff0000), n_u64(ffffffffffffff00)
};
static sha2_64t b2[8] =
{
n_u64(8000000000000000), n_u64(0080000000000000),
n_u64(0000800000000000), n_u64(0000008000000000),
n_u64(0000000080000000), n_u64(0000000000800000),
n_u64(0000000000008000), n_u64(0000000000000080)
};
static void sha_end(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
{ sha2_32t i = (sha2_32t)(ctx->count[0] & SHA512_MASK);
bsw_64(ctx->wbuf, (i + 7) >> 3);
/* bytes in the buffer are now in an order in which references */
/* to 64-bit words will put bytes with lower addresses into the */
/* top of 64 bit words on BOTH big and little endian machines */
/* we now need to mask valid bytes and add the padding which is */
/* a single 1 bit and as many zero bits as necessary. */
ctx->wbuf[i >> 3] = (ctx->wbuf[i >> 3] & m2[i & 7]) | b2[i & 7];
/* we need 17 or more empty byte positions, one for the padding */
/* byte (above) and sixteen for the length count. If there is */
/* not enough space pad and empty the buffer */
if(i > SHA512_BLOCK_SIZE - 17)
{
if(i < 120) ctx->wbuf[15] = 0;
sha512_compile(ctx);
i = 0;
}
else
i = (i >> 3) + 1;
while(i < 14)
ctx->wbuf[i++] = 0;
/* the following 64-bit length fields are assembled in the */
/* wrong byte order on little endian machines but this is */
/* corrected later since they are only ever used as 64-bit */
/* word values. */
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
ctx->wbuf[15] = ctx->count[0] << 3;
sha512_compile(ctx);
/* extract the hash value as bytes in case the hash buffer is */
/* misaligned for 32-bit words */
for(i = 0; i < hlen; ++i)
hval[i] = (unsigned char)(ctx->hash[i >> 3] >> 8 * (~i & 7));
}
#endif
#if defined(SHA_2) || defined(SHA_384)
/* SHA384 initialisation data */
const sha2_64t i384[80] =
{
n_u64(cbbb9d5dc1059ed8), n_u64(629a292a367cd507),
n_u64(9159015a3070dd17), n_u64(152fecd8f70e5939),
n_u64(67332667ffc00b31), n_u64(8eb44a8768581511),
n_u64(db0c2e0d64f98fa7), n_u64(47b5481dbefa4fa4)
};
void sha384_begin(sha384_ctx ctx[1])
{
ctx->count[0] = ctx->count[1] = 0;
memcpy(ctx->hash, i384, 8 * sizeof(sha2_64t));
}
void sha384_end(unsigned char hval[], sha384_ctx ctx[1])
{
sha_end(hval, ctx, SHA384_DIGEST_SIZE);
}
void sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha384_ctx cx[1];
sha384_begin(cx); sha384_hash(data, len, cx); sha384_end(hval, cx);
}
#endif
#if defined(SHA_2) || defined(SHA_512)
/* SHA512 initialisation data */
const sha2_64t i512[80] =
{
n_u64(6a09e667f3bcc908), n_u64(bb67ae8584caa73b),
n_u64(3c6ef372fe94f82b), n_u64(a54ff53a5f1d36f1),
n_u64(510e527fade682d1), n_u64(9b05688c2b3e6c1f),
n_u64(1f83d9abfb41bd6b), n_u64(5be0cd19137e2179)
};
void sha512_begin(sha512_ctx ctx[1])
{
ctx->count[0] = ctx->count[1] = 0;
memcpy(ctx->hash, i512, 8 * sizeof(sha2_64t));
}
void sha512_end(unsigned char hval[], sha512_ctx ctx[1])
{
sha_end(hval, ctx, SHA512_DIGEST_SIZE);
}
void sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha512_ctx cx[1];
sha512_begin(cx); sha512_hash(data, len, cx); sha512_end(hval, cx);
}
#endif
#if defined(SHA_2)
#define CTX_256(x) ((x)->uu->ctx256)
#define CTX_384(x) ((x)->uu->ctx512)
#define CTX_512(x) ((x)->uu->ctx512)
/* SHA2 initialisation */
int sha2_begin(unsigned long len, sha2_ctx ctx[1])
{ unsigned long l = len;
switch(len)
{
case 256: l = len >> 3;
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
memcpy(CTX_256(ctx)->hash, i256, 32); break;
case 384: l = len >> 3;
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
memcpy(CTX_384(ctx)->hash, i384, 64); break;
case 512: l = len >> 3;
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
memcpy(CTX_512(ctx)->hash, i512, 64); break;
default: return SHA2_BAD;
}
ctx->sha2_len = l; return SHA2_GOOD;
}
void sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
{
switch(ctx->sha2_len)
{
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
}
}
void sha2_end(unsigned char hval[], sha2_ctx ctx[1])
{
switch(ctx->sha2_len)
{
case 32: sha256_end(hval, CTX_256(ctx)); return;
case 48: sha_end(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
case 64: sha_end(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
}
}
int sha2(unsigned char hval[], unsigned long size,
const unsigned char data[], unsigned long len)
{ sha2_ctx cx[1];
if(sha2_begin(size, cx) == SHA2_GOOD)
{
sha2_hash(data, len, cx); sha2_end(hval, cx); return SHA2_GOOD;
}
else
return SHA2_BAD;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -