⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t3dlib7.cpp

📁 3D游戏编程大师技巧第九章的源代码
💻 CPP
📖 第 1 页 / 共 5 页
字号:

    } // end for vertex

} // end for poly

} // end Camera_To_Perspective_RENDERLIST4DV2

////////////////////////////////////////////////////////////////

void Camera_To_Perspective_Screen_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 
                                                 CAM4DV1_PTR cam)
{
// NOTE: this is not a matrix based function
// this function transforms the camera coordinates of an object
// into Screen scaled perspective coordinates, based on the 
// sent camera object, that is, view_dist_h and view_dist_v 
// should be set to cause the desired (viewport_width X viewport_height)
// it only works on the vertices in the tvlist[] list
// finally, the function also inverts the y axis, so the coordinates
// generated from this function ARE screen coordinates and ready for
// rendering

// transform each polygon in the render list to perspective screen 
// coordinates assumes the render list has already been transformed 
// to camera coordinates and the result is in tvlist[]
for (int poly = 0; poly < rend_list->num_polys; poly++)
{
// acquire current polygon
POLYF4DV2_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?
// transform this polygon if and only if it's not clipped, not culled,
// active, and visible, note however the concept of "backface" is 
// irrelevant in a wire frame engine though
if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV2_STATE_ACTIVE) ||
     (curr_poly->state & POLY4DV2_STATE_CLIPPED ) ||
     (curr_poly->state & POLY4DV2_STATE_BACKFACE) )
       continue; // move onto next poly

float alpha = (0.5*cam->viewport_width-0.5);
float beta  = (0.5*cam->viewport_height-0.5);

// all good, let's transform 
for (int vertex = 0; vertex < 3; vertex++)
    {
    float z = curr_poly->tvlist[vertex].z;

    // transform the vertex by the view parameters in the camera
    curr_poly->tvlist[vertex].x = cam->view_dist*curr_poly->tvlist[vertex].x/z;
    curr_poly->tvlist[vertex].y = cam->view_dist*curr_poly->tvlist[vertex].y/z;
    // z = z, so no change

    // not that we are NOT dividing by the homogenous w coordinate since
    // we are not using a matrix operation for this version of the function 

    // now the coordinates are in the range x:(-viewport_width/2 to viewport_width/2)
    // and y:(-viewport_height/2 to viewport_height/2), thus we need a translation and
    // since the y-axis is inverted, we need to invert y to complete the screen 
    // transform:
    curr_poly->tvlist[vertex].x =  curr_poly->tvlist[vertex].x + alpha; 
    curr_poly->tvlist[vertex].y = -curr_poly->tvlist[vertex].y + beta;

    } // end for vertex

} // end for poly

} // end Camera_To_Perspective_Screen_RENDERLIST4DV2

//////////////////////////////////////////////////////////////

void Perspective_To_Screen_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 
                                          CAM4DV1_PTR cam)
{
// NOTE: this is not a matrix based function
// this function transforms the perspective coordinates of the render
// list into screen coordinates, based on the sent viewport in the camera
// assuming that the viewplane coordinates were normalized
// you would use this function instead of the object based function
// if you decided earlier in the pipeline to turn each object into 
// a list of polygons and then add them to the global render list
// you would only call this function if you previously performed
// a normalized perspective transform

// transform each polygon in the render list from perspective to screen 
// coordinates assumes the render list has already been transformed 
// to normalized perspective coordinates and the result is in tvlist[]
for (int poly = 0; poly < rend_list->num_polys; poly++)
{
// acquire current polygon
POLYF4DV2_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?
// transform this polygon if and only if it's not clipped, not culled,
// active, and visible, note however the concept of "backface" is 
// irrelevant in a wire frame engine though
if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV2_STATE_ACTIVE) ||
     (curr_poly->state & POLY4DV2_STATE_CLIPPED ) ||
     (curr_poly->state & POLY4DV2_STATE_BACKFACE) )
       continue; // move onto next poly

float alpha = (0.5*cam->viewport_width-0.5);
float beta  = (0.5*cam->viewport_height-0.5);

// all good, let's transform 
for (int vertex = 0; vertex < 3; vertex++)
    {
    // the vertex is in perspective normalized coords from -1 to 1
    // on each axis, simple scale them and invert y axis and project
    // to screen

    // transform the vertex by the view parameters in the camera
    curr_poly->tvlist[vertex].x = alpha + alpha*curr_poly->tvlist[vertex].x;
    curr_poly->tvlist[vertex].y = beta  - beta *curr_poly->tvlist[vertex].y;
    } // end for vertex

} // end for poly

} // end Perspective_To_Screen_RENDERLIST4DV2

///////////////////////////////////////////////////////////////

void World_To_Camera_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 
                                   CAM4DV1_PTR cam)
{
// NOTE: this is a matrix based function
// this function transforms each polygon in the global render list
// to camera coordinates based on the sent camera transform matrix
// you would use this function instead of the object based function
// if you decided earlier in the pipeline to turn each object into 
// a list of polygons and then add them to the global render list
// the conversion of an object into polygons probably would have
// happened after object culling, local transforms, local to world
// and backface culling, so the minimum number of polygons from
// each object are in the list, note that the function assumes
// that at LEAST the local to world transform has been called
// and the polygon data is in the transformed list tvlist of
// the POLYF4DV1 object

// transform each polygon in the render list into camera coordinates
// assumes the render list has already been transformed to world
// coordinates and the result is in tvlist[] of each polygon object

for (int poly = 0; poly < rend_list->num_polys; poly++)
{
// acquire current polygon
POLYF4DV2_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?
// transform this polygon if and only if it's not clipped, not culled,
// active, and visible, note however the concept of "backface" is 
// irrelevant in a wire frame engine though
if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV2_STATE_ACTIVE) ||
     (curr_poly->state & POLY4DV2_STATE_CLIPPED ) ||
     (curr_poly->state & POLY4DV2_STATE_BACKFACE) )
       continue; // move onto next poly

// all good, let's transform 
for (int vertex = 0; vertex < 3; vertex++)
    {
    // transform the vertex by the mcam matrix within the camera
    // it better be valid!
    POINT4D presult; // hold result of each transformation

    // transform point
    Mat_Mul_VECTOR4D_4X4(&curr_poly->tvlist[vertex].v, &cam->mcam, &presult);

    // store result back
    VECTOR4D_COPY(&curr_poly->tvlist[vertex].v, &presult); 
    } // end for vertex

} // end for poly

} // end World_To_Camera_RENDERLIST4DV2


////////////////////////////////////////////////////////////

void Camera_To_Perspective_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam)
{
// NOTE: this is not a matrix based function
// this function transforms the camera coordinates of an object
// into perspective coordinates, based on the 
// sent camera object, but it totally disregards the polygons themselves,
// it only works on the vertices in the vlist_trans[] list
// this is one way to do it, you might instead transform
// the global list of polygons in the render list since you 
// are guaranteed that those polys represent geometry that 
// has passed thru backfaces culling (if any)
// finally this function is really for experimental reasons only
// you would probably never let an object stay intact this far down
// the pipeline, since it's probably that there's only a single polygon
// that is visible! But this function has to transform the whole mesh!
// note: only operates on the current frame

// transform each vertex in the object to perspective coordinates
// assumes the object has already been transformed to camera
// coordinates and the result is in vlist_trans[]
for (int vertex = 0; vertex < obj->num_vertices; vertex++)
    {
    float z = obj->vlist_trans[vertex].z;

    // transform the vertex by the view parameters in the camera
    obj->vlist_trans[vertex].x = cam->view_dist*obj->vlist_trans[vertex].x/z;
    obj->vlist_trans[vertex].y = cam->view_dist*obj->vlist_trans[vertex].y*cam->aspect_ratio/z;
    // z = z, so no change

    // not that we are NOT dividing by the homogenous w coordinate since
    // we are not using a matrix operation for this version of the function 
  
    } // end for vertex

} // end Camera_To_Perspective_OBJECT4DV2

//////////////////////////////////////////////////////////////

void Camera_To_Perspective_Screen_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam)
{
// NOTE: this is not a matrix based function
// this function transforms the camera coordinates of an object
// into Screen scaled perspective coordinates, based on the 
// sent camera object, that is, view_dist_h and view_dist_v 
// should be set to cause the desired (width X height)
// projection of the vertices, but the function totally 
// disregards the polygons themselves,
// it only works on the vertices in the vlist_trans[] list
// this is one way to do it, you might instead transform
// the global list of polygons in the render list since you 
// are guaranteed that those polys represent geometry that 
// has passed thru backfaces culling (if any)
// finally this function is really for experimental reasons only
// you would probably never let an object stay intact this far down
// the pipeline, since it's probably that there's only a single polygon
// that is visible! But this function has to transform the whole mesh!
// finally, the function also inverts the y axis, so the coordinates
// generated from this function ARE screen coordinates and ready for
// rendering
// note: only operates on the current frame

float alpha = (0.5*cam->viewport_width-0.5);
float beta  = (0.5*cam->viewport_height-0.5);

// transform each vertex in the object to perspective screen coordinates
// assumes the object has already been transformed to camera
// coordinates and the result is in vlist_trans[]
for (int vertex = 0; vertex < obj->num_vertices; vertex++)
    {
    float z = obj->vlist_trans[vertex].z;

    // transform the vertex by the view parameters in the camera
    obj->vlist_trans[vertex].x = cam->view_dist*obj->vlist_trans[vertex].x/z;
    obj->vlist_trans[vertex].y = cam->view_dist*obj->vlist_trans[vertex].y/z;
    // z = z, so no change

    // not that we are NOT dividing by the homogenous w coordinate since
    // we are not using a matrix operation for this version of the function 

    // now the coordinates are in the range x:(-viewport_width/2 to viewport_width/2)
    // and y:(-viewport_height/2 to viewport_height/2), thus we need a translation and
    // since the y-axis is inverted, we need to invert y to complete the screen 
    // transform:
    obj->vlist_trans[vertex].x =  obj->vlist_trans[vertex].x + alpha;
    obj->vlist_trans[vertex].y = -obj->vlist_trans[vertex].y + beta;

    } // end for vertex

} // end Camera_To_Perspective_Screen_OBJECT4DV2

//////////////////////////////////////////////////////////////

void Perspective_To_Screen_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam)
{
// NOTE: this is not a matrix based function
// this function transforms the perspective coordinates of an object
// into screen coordinates, based on the sent viewport info
// but it totally disregards the polygons themselves,
// it only works on the vertices in the vlist_trans[] list
// this is one way to do it, you might instead transform
// the global list of polygons in the render list since you 
// are guaranteed that those polys represent geometry that 
// has passed thru backfaces culling (if any)
// finally this function is really for experimental reasons only
// you would probably never let an object stay intact this far down
// the pipeline, since it's probably that there's only a single polygon
// that is visible! But this function has to transform the whole mesh!
// this function would be called after a perspective
// projection was performed on the object

// transform each vertex in the object to screen coordinates
// assumes the object has already been transformed to perspective
// coordinates and the result is in vlist_trans[]
// note: only operates on the current frame

float alpha = (0.5*cam->viewport_width-0.5);
float beta  = (0.5*cam->viewport_height-0.5);

for (int vertex = 0; vertex < obj->num_vertices; vertex++)
    {
    // assumes the vertex is in perspective normalized coords from -1 to 1
    // on each axis, simple scale them to viewport and invert y axis and project
    // to screen

    // transform the vertex by the view parameters in the camera
    obj->vlist_trans[vertex].x = alpha + alpha*obj->vlist_trans[vertex].x;
    obj->vlist_trans[vertex].y = beta  - beta *obj->vlist_trans[vertex].y;
  
    } // end for vertex

} // end Perspective_To_Screen_OBJECT4DV2

/////////////////////////////////////////////////////////////

void Convert_From_Homogeneous4D_OBJECT4DV2(OBJECT4DV2_PTR obj)
{
// this function convertes all vertices in the transformed
// vertex list from 4D homogeneous coordinates to normal 3D coordinates
// by dividing each x,y,z component by w
// note: only operates on the current frame

for (int vertex = 0; vertex < obj->num_vertices; vertex++)
    {
    // convert to non-homogenous coords
    VECTOR4D_DIV_BY_W(&obj->vlist_trans[vertex].v);     
    } // end for vertex

} // end Convert_From_Homogeneous4D_OBJECT4DV2

//////////////////////////////////////////////////////////////////

int Insert_POLY4DV2_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 
                                   POLY4DV2_PTR poly)
{
// converts the sent POLY4DV2 into a POLYF4DV2 and inserts it
// into the render list, this function needs optmizing

// step 0: are we full?
if (rend_list->num_polys >= RENDERLIST4DV2_MAX_POLYS)
   return(0);

// step 1: copy polygon into next opening in polygon render list

// point pointer to polygon structure
rend_list->poly_ptrs[rend_list->num_polys] = &rend_list->poly_data[rend_list->num_polys];

// copy fields { ??????????? make sure ALL fields are copied, normals, textures, etc!!!  }
rend_list->poly_data[rend_list->num_polys].state   = poly->state;
rend_list->poly_data[rend_list->num_polys].attr    = poly->attr;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -